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1. Notation.

Let V be a vector space. If W is a subspace
of W we write W C V .

2. Claim.

Let V be a vector space.

W,W ′ C V =⇒ W ∩W ′ C V.

Proof.

(a) Since W and W ′ are both vector
spaces, OV ∈W ∩W ′ and, therefore,

W ∩W ′ 6= ∅.

(b) Let u, v ∈ W ∩W ′. Then u, v ∈ W .
Since W is a subspace, u + v ∈ W .
Similarly, u+ v ∈W ′ and so

u+ v ∈W ∩W ′.

(c) Finally, let c be a scalar and u ∈
W ∩ W ′. Since W is a subspace,
cu ∈W . Simlarly cu ∈W ′ and hence

cu ∈W ∩W ′.

Hence, by the subspace criterion

W ∩W ′ C V.

Remark: This result is a special case of:

3. Claim.

Let W be the set of subspaces of a vector
space V .

A ⊆ W =⇒
⋂
A ∈ W

I.e., W is a closure system on V .

4. Claim.

Let V be a vector space. Then

S ⊆ V =⇒ 〈S〉C V.

5. Claim.

Let V be a vector space and S ⊆ V.

〈S〉 =
⋂
{W ∈ W : S ⊆W}.

I.e., The span of S coincides with its clo-
sure.

6. Claim.

Span is extensive, isotonic and idempotent.
I.e., (respectively)

(a) A ⊆ 〈A〉.

(b) A ⊆ B =⇒ 〈A〉 ⊆ 〈B〉.

(c) 〈〈A〉〉 = 〈A〉.

7. Claim.

W C V =⇒ 〈W 〉 = W (1)

8. Claim.

Let V be a vector space. Then

W,W ′ C V =⇒ W +W ′ C V.

where

W +W ′ = {w + w′ : w ∈W, w′ ∈W ′}.

9. Definition.

Let V be a vector space and W,W ′CV . If
W ∩W ′ = {0V } then W + W ′ is denoted
W ⊕W ′ and is called the direct sum of W
and W ′. In this case W and W ′ are said
to be supplementary subspaces.

10. Claim.

If V = W1 ⊕ W2 and v ∈ V , there exist
unique w1 ∈W and w2 ∈W2 such that

v = w1 + w2.

Proof.

Suppose that

v = w1 + w2

= w′
1 + w′

2.
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then

W1 3 w1 − w′
1 = w2 − w′

2 ∈W2.

Hence

w1 − w′
1 ∈W1 ∩W2

w2 − w′
2 ∈W1 ∩W2

But W ∩ W ′ = {0V } and it follows that
w1 = w′

1 and w2 = w′
2.

11. Claim.

Let V be a vector space and W1,W2 C V .
Then

〈W1 ∪W2〉 = W1 +W2.

Proof.

Clearly

W1 +W2 ⊆ 〈W1 ∪W2, 〉.

Let x ∈W1 ∪W2. If x ∈W1 then

x = w1 + 0

∈W1 +W2

Similarly If x ∈W1 then

x ∈W1 +W2.

It follows that

W1 ∪W2 ⊆W1 +W2

and by (1):

〈W1 ∪W2〉 ⊆ 〈W1 +W2〉
= W1 +W2

12. Claim.

Let V be a finite dimensional vector spacen
and W1,W2 C V . Then

dim(W1 +W2) = dimW1 + dimW2

− dimW1 ∩W2 (2)

Proof.

Let α ∈ B(W1 ∩W2). Extend α to bases

M = α ∪ β ∈ B(W1)

N = α ∪ γ ∈ B(W2).

We Claim.

α ∪ β ∪ γ ∈ B(W1 +W2).

Clearly, α ∪ β ∪ γ is a spanning set.

Let

α = {α1, α2, . . .}
β = {β1, β2, . . .}
γ = {γ1, γ2, . . .}

If ∑
aiαi +

∑
bjβj +

∑
ckγk = 0

then

W1 3
∑

aiαi+
∑

bjβj = −
∑

ckγk ∈W2.

Hence∑
aiαi +

∑
bjβj ∈W1 ∩W2

and so∑
aiαi +

∑
bjβj =

∑
dlαl.

i.e., ∑
dlαl −

∑
aiαi −

∑
bjβj = 0.

Since α ∪ β is an independent set, it must
be that

bj = 0,∀j.
Similarly

ck = 0,∀k.
Hence ∑

aiαi = 0.

But α is an independent set and so

ai = 0,∀i.

Hence α ∪ β ∪ γ is an independent set and
it follows that

α ∪ β ∪ γ ∈ B(W1 +W2).

Therefore,

dim(W1 +W2) = |α ∪ β ∪ γ|
= |M ∪N |
= |M |+ |N | − |M ∩N |

and so

dim(W1 +W2) = dimW1 + dimW2

− dimW1 ∩W2.
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13. Example.

Let e1, e2, e3 be the standard basis for R3.
Consider the subspaces

W1 = 〈e1, e2〉
W2 = 〈e2, e3〉.

Then
W1 ∩W2 = 〈e2〉

has dimension 1. Hence, by (3)

dim(W1 +W2) = 2 + 2− 1 = 3.

14. Example.

Let e1, e2, e3, e4 be the standard basis for
R4. Consider the subspaces

W1 = 〈e1, e2〉
W2 = 〈e3, e4〉.

Notice that the planes W1 and W2 inter-
sect in a single point O and equation (3)
yields

dim(W1 +W2 = 4.

15. Let V be a finite dimensional vector space.
and W1 C V a subspace. Then there exists
W2 C V such that

W1 ⊕W2 = V.

Proof.

Let
α = α1, α2, . . . αk

be a basis for W1. Extend α to a basis

α1, . . . αk, αk+1, . . . αn

for V . Let W2 = 〈αk+1, . . . αn〉. Clearly

V = W1 +W2.

We claim that

W1 ∩W2 = {∅}.

Let x ∈ W1 ∩W2. Then, there exist con-
stants a1, a2, . . . , an such that

x =

k∑
i=1

aiαi =
n∑

i=k+1

aiαi.

Hence,

k∑
i=1

aiαi +

n∑
i=k+1

(−ai)αi = 0.

Since the αi are independent, ai = 0 for all
i and so x = OV .

Remark. In the special case, V = Rn if
W C Rn has an orthonormal basis

α1, . . . αk

and
α1, . . . αk, αk+1, . . . αn

is an orthonormal extension to a basis for
Rn, then

〈αk+1, . . . αn〉

is a basis for the orthogonal subspace W⊥.

16. Let V and W be finite dimensional vec-
tor spaces and L : V → W a linear map.
Then there exists a supplementary sub-
space P C V such that

P ⊕ kerL = V.

Proof.

Let
{w1, w2, . . . wk}

be a basis for ImL. Then there exist vec-
tors v1, v2 . . . vk ∈ V such that

L(vi) = wi, 1 ≤ i ≤ k.

We Claim.

that the vi comprise an independent set.
Suppose, to the contrary, that there exist
scalars c1, c2, . . . , ck, not all zero, such that

k∑
i=1

civi = 0

then

L

(
k∑

i=1

civi

)
=

k∑
i=1

ciLi(vi)

=

k∑
i=1

ciwi

= 0.
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Contradicting the independence of the wi.
Let

P = 〈v1, v2, . . . vk〉.
We claim that

P ⊕ kerL = V.

If v ∈ V then L(v) ∈ ImL and so there
exist constants ai such that

L(v) =
∑

aiwi

=
∑

aiLvi

= L
(∑

aivi

)
.

Hence
L
(
v −

∑
aivi

)
= 0.

and so

v ∈ 〈v1, v2, . . . , vk〉+ kerL

= P + L.

It remains to show that

P ∩ kerL = {0V }.

Let x ∈ P ∩ kerL. Then there exist con-
stants di such that x =

∑
divi and

L(x) = L
(∑

divi

)
=
∑

diL(vi)

=
∑

diwi

= 0V .

By independence of the wi we have that
di = 0 for all i and so x = 0. Hence

P ⊕ kerL = V.

17. Corollary.

dim(kerL) + dim(ImL) = dimV. (3)

18. Exercise.

Let L : V → W be a linear map. Show
that the following are equivalent:

(a) L is injective.

(b) kerL = {OV }.

19. Claim.

Let L : V → W be a linear map. Show
that

(a) If L is injective, then

dim(V ) ≤ dimW.

(b) If L is surjective then

dim(V ) ≥ dimW.

Proof.

Follows immediately from (3) by noting
that if L is injective, then

dim(kerL) = 0

whereas if L is surjective

dim(ImL) = dim(W ).

Exercises

1. Which of the following sets are subspaces
of R3? Justify your answer.

(a) {(a, b, c)|2a− b+ c = 0}

(b) {(0, 0, 0)}

(c) {(x, y, z)|z + xy = 0}

(d) {(x, y, z|x+ y = 0}

(e) {(a, b) ∈ R2 : b = a2}

2. Let ~u, ~v, ~w be vectors. Suppose ~u lies in
the span of ~v, and ~w. Show that {~v, ~w}
spans the same subspace as {~u,~v, ~w, }.

3. Let S be a subspace of Rn. Define

S⊥ = {x ∈ Rn : 〈x, s〉 = 0 ∀s ∈ S}

Show that S⊥ is a subspace of Rn.

4. Let W and W ′ be subspaces of a vector
space V . Show that W

⋂
W ′ is a subspace

of V.
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5. Show that the intersection of any family of
subspaces of a vector space V is a subspace.

6. Let W be the set of solutions of the differ-
ential equation x′′ + x = 0.

(a) Show that the set {sin, cos} is a lin-
early independent subset of the vector
space V of functions with derivatives
of all orders in R.

(b) Let

f(t) = sin t

g(t) = cos(t+ π/2)

Show that {f, g} is a linearly depen-
dent subset of W .

7. Let V be a finite dimensional vector space
and W1,W2 subspaces of V . Show that

dim(W1 +W2) = dimW1 + dimW2

− dimW1

⋂
W2

8. Let V be a vector space and let W be the
set of all subspaces of V . Let A ⊆ V . The
closure Ā of A is the set

Ā =
⋂
{W ∈ W : A ⊆W}

Show that Ā is a subspace. Show also that:

(a) A ⊆ B =⇒ Ā ⊆ B̄ (Isotonicity)

(b) A ⊆ Ā (Extensivity)

(c) ¯̄A = Ā (Idempotence)

9. Let V be a vector space and A ⊆ V . Show
that

Ā = 〈A〉

10. Exercise.

Let L : V →W be a linear map. Show that
if dim(V ) = dim(W ), then L is injective if
and only if it is surjective.

11. Exercise.

Let L : V → W be a linear map. If
v, v′ ∈ V define

v ∼ v′ ⇐⇒ L(v) = L(v′).

(a) Show that ∼ is an equivalence rela-
tion.

(b) Show that the equivalence classes of
∼ are the distinct cosets of the kernel
of L .

(Recall that if x ∈ V the coset determined
by x is the set {x+ k : k ∈ kerL}.)
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