Additional Properties of Subspaces

©Philip Pennance¹ Draft: – April 2019.

1. Notation.

Let V be a vector space. If W is a subspace of W we write $W \triangleleft V$.

2. Claim.

Let V be a vector space.

$$W, W' \triangleleft V \implies W \cap W' \triangleleft V.$$

Proof.

(a) Since W and W' are both vector spaces, $O_V \in W \cap W'$ and, therefore,

$$W \cap W' \neq \emptyset$$
.

(b) Let $u, v \in W \cap W'$. Then $u, v \in W$. Since W is a subspace, $u + v \in W$. Similarly, $u + v \in W'$ and so

$$u+v\in W\cap W'$$
.

(c) Finally, let c be a scalar and $u \in W \cap W'$. Since W is a subspace, $cu \in W$. Similarly $cu \in W'$ and hence

$$cu \in W \cap W'$$
.

Hence, by the subspace criterion

$$W \cap W' \lhd V$$
.

Remark: This result is a special case of:

3. Claim.

Let W be the set of subspaces of a vector space V.

$$A \subseteq W \implies \bigcap A \in W$$

I.e., W is a closure system on V.

4. Claim.

Let V be a vector space. Then

$$S \subseteq V \implies \langle S \rangle \triangleleft V.$$

5. Claim.

Let V be a vector space and $S \subseteq V$.

$$\langle S \rangle = \bigcap \{ W \in \mathcal{W} : S \subseteq W \}.$$

I.e., The span of S coincides with its closure.

6. Claim.

Span is extensive, isotonic and idempotent. I.e., (respectively)

- (a) $A \subseteq \langle A \rangle$.
- (b) $A \subseteq B \implies \langle A \rangle \subseteq \langle B \rangle$.
- (c) $\langle \langle A \rangle \rangle = \langle A \rangle$.

7. Claim.

$$W \lhd V \implies \langle W \rangle = W \tag{1}$$

8. Claim.

Let V be a vector space. Then

$$W, W' \triangleleft V \implies W + W' \triangleleft V.$$

where

$$W + W' = \{w + w' : w \in W, \quad w' \in W'\}.$$

9. Definition.

Let V be a vector space and $W, W' \triangleleft V$. If $W \cap W' = \{0_V\}$ then W + W' is denoted $W \oplus W'$ and is called the *direct sum* of W and W'. In this case W and W' are said to be *supplementary* subspaces.

10. Claim.

If $V = W_1 \oplus W_2$ and $v \in V$, there exist unique $w_1 \in W$ and $w_2 \in W_2$ such that

$$v = w_1 + w_2.$$

Proof.

Suppose that

$$v = w_1 + w_2$$

= $w'_1 + w'_2$.

¹http://pennance.us

then

$$W_1 \ni w_1 - w_1' = w_2 - w_2' \in W_2.$$

Hence

$$w_1 - w_1' \in W_1 \cap W_2$$

 $w_2 - w_2' \in W_1 \cap W_2$

But $W \cap W' = \{0_V\}$ and it follows that $w_1 = w'_1$ and $w_2 = w'_2$.

11. Claim.

Let V be a vector space and $W_1, W_2 \triangleleft V$. Then

$$\langle W_1 \cup W_2 \rangle = W_1 + W_2.$$

Proof.

Clearly

$$W_1 + W_2 \subseteq \langle W_1 \cup W_2, \rangle.$$

Let $x \in W_1 \cup W_2$. If $x \in W_1$ then

$$x = w_1 + 0$$
$$\in W_1 + W_2$$

Similarly If $x \in W_1$ then

$$x \in W_1 + W_2$$
.

It follows that

$$W_1 \cup W_2 \subseteq W_1 + W_2$$

and by (1):

$$\langle W_1 \cup W_2 \rangle \subseteq \langle W_1 + W_2 \rangle$$
$$= W_1 + W_2$$

12. Claim.

Let V be a finite dimensional vector spacen and $W_1, W_2 \triangleleft V$. Then

$$\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim W_1 \cap W_2 \quad (2)$$

Proof.

Let $\alpha \in \mathcal{B}(W_1 \cap W_2)$. Extend α to bases

$$M = \alpha \cup \beta \in \mathcal{B}(W_1)$$

$$N = \alpha \cup \gamma \in \mathcal{B}(W_2).$$

We Claim.

$$\alpha \cup \beta \cup \gamma \in \mathcal{B}(W_1 + W_2).$$

Clearly, $\alpha \cup \beta \cup \gamma$ is a spanning set.

Let

$$\alpha = \{\alpha_1, \alpha_2, \ldots\}$$
$$\beta = \{\beta_1, \beta_2, \ldots\}$$
$$\gamma = \{\gamma_1, \gamma_2, \ldots\}$$

If

$$\sum a_i \alpha_i + \sum b_j \beta_j + \sum c_k \gamma_k = 0$$

then

$$W_1\ni \sum a_i\alpha_i + \sum b_j\beta_j = -\sum c_k\gamma_k \in W_2.$$

Hence

$$\sum a_i \alpha_i + \sum b_j \beta_j \in W_1 \cap W_2$$

and so

$$\sum a_i \alpha_i + \sum b_j \beta_j = \sum d_l \alpha_l.$$

i.e.,

$$\sum d_l \alpha_l - \sum a_i \alpha_i - \sum b_j \beta_j = 0.$$

Since $\alpha \cup \beta$ is an independent set, it must be that

$$b_i = 0, \forall i$$
.

Similarly

$$c_k = 0, \forall k.$$

Hence

$$\sum a_i \alpha_i = 0.$$

But α is an independent set and so

$$a_i = 0, \forall i.$$

Hence $\alpha \cup \beta \cup \gamma$ is an independent set and it follows that

$$\alpha \cup \beta \cup \gamma \in \mathcal{B}(W_1 + W_2).$$

Therefore,

$$\dim(W_1 + W_2) = |\alpha \cup \beta \cup \gamma|$$
$$= |M \cup N|$$
$$= |M| + |N| - |M \cap N|$$

and so

$$\dim(W_1 + W_2) = \dim W_1 + \dim W_2$$
$$-\dim W_1 \cap W_2.$$

13. Example.

Let e_1, e_2, e_3 be the standard basis for \mathbb{R}^3 . Consider the subspaces

$$W_1 = \langle e_1, e_2 \rangle$$
$$W_2 = \langle e_2, e_3 \rangle.$$

Then

$$W_1 \cap W_2 = \langle e_2 \rangle$$

has dimension 1. Hence, by (3)

$$\dim(W_1 + W_2) = 2 + 2 - 1 = 3.$$

14. Example.

Let e_1, e_2, e_3, e_4 be the standard basis for \mathbb{R}^4 . Consider the subspaces

$$W_1 = \langle e_1, e_2 \rangle$$
$$W_2 = \langle e_3, e_4 \rangle.$$

Notice that the planes W_1 and W_2 intersect in a single point O and equation (3) yields

$$\dim(W_1 + W_2 = 4.$$

15. Let V be a finite dimensional vector space. and $W_1 \lhd V$ a subspace. Then there exists $W_2 \lhd V$ such that

$$W_1 \oplus W_2 = V$$
.

Proof.

Let

$$\alpha = \alpha_1, \alpha_2, \dots \alpha_k$$

be a basis for W_1 . Extend α to a basis

$$\alpha_1, \ldots \alpha_k, \alpha_{k+1}, \ldots \alpha_n$$

for V. Let $W_2 = \langle \alpha_{k+1}, \dots \alpha_n \rangle$. Clearly

$$V = W_1 + W_2$$
.

We claim that

$$W_1 \cap W_2 = \{\emptyset\}.$$

Let $x \in W_1 \cap W_2$. Then, there exist constants a_1, a_2, \ldots, a_n such that

$$x = \sum_{i=1}^{k} a_i \alpha_i = \sum_{i=k+1}^{n} a_i \alpha_i.$$

Hence,

$$\sum_{i=1}^{k} a_i \alpha_i + \sum_{i=k+1}^{n} (-a_i) \alpha_i = 0.$$

Since the α_i are independent, $a_i = 0$ for all i and so $x = O_V$.

Remark. In the special case, $V = \mathbb{R}^n$ if $W \triangleleft \mathbb{R}^n$ has an orthonormal basis

$$\alpha_1, \ldots \alpha_k$$

and

$$\alpha_1, \ldots \alpha_k, \alpha_{k+1}, \ldots \alpha_n$$

is an orthonormal extension to a basis for \mathbb{R}^n , then

$$\langle \alpha_{k+1}, \dots \alpha_n \rangle$$

is a basis for the orthogonal subspace W^{\perp} .

16. Let V and W be finite dimensional vector spaces and $L:V\to W$ a linear map. Then there exists a supplementary subspace $P\lhd V$ such that

$$P \oplus \ker L = V$$
.

Proof.

Let

$$\{w_1, w_2, \dots w_k\}$$

be a basis for Im L. Then there exist vectors $v_1, v_2 \dots v_k \in V$ such that

$$L(v_i) = w_i, \quad 1 \le i \le k.$$

We Claim.

that the v_i comprise an independent set. Suppose, to the contrary, that there exist scalars c_1, c_2, \ldots, c_k , not all zero, such that

$$\sum_{i=1}^{k} c_i v_i = 0$$

then

$$L\left(\sum_{i=1}^{k} c_i v_i\right) = \sum_{i=1}^{k} c_i L_i(v_i)$$
$$= \sum_{i=1}^{k} c_i w_i$$
$$= 0.$$

Contradicting the independence of the w_i . Let

$$P = \langle v_1, v_2, \dots v_k \rangle.$$

We claim that

$$P \oplus \ker L = V$$
.

If $v \in V$ then $L(v) \in \operatorname{Im} L$ and so there exist constants a_i such that

$$L(v) = \sum a_i w_i$$

$$= \sum a_i L v_i$$

$$= L\left(\sum a_i v_i\right).$$

Hence

$$L\left(v - \sum a_i v_i\right) = 0.$$

and so

$$v \in \langle v_1, v_2, \dots, v_k \rangle + \ker L$$

= $P + L$.

It remains to show that

$$P \cap \ker L = \{0_V\}.$$

Let $x \in P \cap \ker L$. Then there exist constants d_i such that $x = \sum d_i v_i$ and

$$L(x) = L\left(\sum d_i v_i\right)$$

$$= \sum d_i L(v_i)$$

$$= \sum d_i w_i$$

$$= 0_V$$

By independence of the w_i we have that $d_i = 0$ for all i and so x = 0. Hence

$$P \oplus \ker L = V$$
.

17. Corollary.

$$\dim(\ker L) + \dim(\operatorname{Im} L) = \dim V.$$
 (3)

18. Exercise.

Let $L: V \to W$ be a linear map. Show that the following are equivalent:

- (a) L is injective.
- (b) $\ker L = \{O_V\}.$
- 19. Claim.

Let $L: V \to W$ be a linear map. Show that

(a) If L is injective, then

$$\dim(V) \leq \dim W$$
.

(b) If L is surjective then

$$\dim(V) \ge \dim W$$
.

Proof.

Follows immediately from (3) by noting that if L is injective, then

$$\dim(\ker L) = 0$$

whereas if L is surjective

$$\dim(\operatorname{Im} L) = \dim(W).$$

Exercises

- 1. Which of the following sets are subspaces of \mathbb{R}^3 ? Justify your answer.
 - (a) $\{(a, b, c)|2a b + c = 0\}$
 - (b) $\{(0,0,0)\}$
 - (c) $\{(x, y, z)|z + xy = 0\}$
 - (d) $\{(x, y, z | x + y = 0)\}$
 - (e) $\{(a,b) \in \mathbb{R}^2 : b = a^2\}$

- 2. Let \vec{u} , \vec{v} , \vec{w} be vectors. Suppose \vec{u} lies in the span of \vec{v} , and \vec{w} . Show that $\{\vec{v}, \vec{w}\}$ spans the same subspace as $\{\vec{u}, \vec{v}, \vec{w}, \}$.
- 3. Let S be a subspace of \mathbb{R}^n . Define

$$S^{\perp} = \{ x \in \mathbb{R}^n : \langle x, s \rangle = 0 \quad \forall s \in S \}$$

Show that S^{\perp} is a subspace of \mathbb{R}^n .

4. Let W and W' be subspaces of a vector space V. Show that $W \cap W'$ is a subspace of V.

- 5. Show that the intersection of any family of subspaces of a vector space V is a subspace.
- 6. Let W be the set of solutions of the differential equation x'' + x = 0.
 - (a) Show that the set $\{\sin, \cos\}$ is a linearly independent subset of the vector space V of functions with derivatives of all orders in \mathbb{R} .
 - (b) Let

$$f(t) = \sin t$$

$$g(t) = \cos(t + \pi/2)$$

Show that $\{f, g\}$ is a linearly dependent subset of W.

7. Let V be a finite dimensional vector space and W_1, W_2 subspaces of V. Show that

$$\dim(W_1 + W_2) = \dim W_1 + \dim W_2$$
$$-\dim W_1 \cap W_2$$

8. Let V be a vector space and let W be the set of all subspaces of V. Let $A \subseteq V$. The closure \bar{A} of A is the set

$$\bar{A} = \bigcap \{ W \in \mathcal{W} : A \subseteq W \}$$

Show that \bar{A} is a subspace. Show also that:

- (a) $A \subseteq B \implies \bar{A} \subseteq \bar{B}$ (Isotonicity)
- (b) $A \subseteq \bar{A}$ (Extensivity)
- (c) $\bar{A} = \bar{A}$ (Idempotence)
- 9. Let V be a vector space and $A \subseteq V$. Show that

$$\bar{A} = \langle A \rangle$$

10. Exercise.

Let $L: V \to W$ be a linear map. Show that if $\dim(V) = \dim(W)$, then L is injective if and only if it is surjective.

11. Exercise.

Let $L:V\to W$ be a linear map. If $v,v'\in V$ define

$$v \sim v' \iff L(v) = L(v').$$

- (a) Show that \sim is an equivalence relation.
- (b) Show that the equivalence classes of \sim are the distinct cosets of the kernel of L.

(Recall that if $x \in V$ the *coset* determined by x is the set $\{x + k : k \in \ker L\}$.)