Finding the Nullspace of a Matrix

© Prof. Philip Pennance¹ -Version: September 12, 2016

1. To find the null space of a matrix A, recall that if $A \sim H$ where H has Hemite normal form then

$$N(A) = N(H).$$

The following example illustrates the computation of N(H).

2. Example:

Suppose

$$H = \begin{bmatrix} \boxed{1} & 2 & 0 & -2 \\ 0 & 0 & \boxed{1} & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

N(H) is the set of solutions of the system

$$x_1 + 2x_2 - 2x_4 = 0$$
$$x_3 + 2x_4 = 0$$

Let F, P be the sets of free and pivot variables.

$$P = \{x_1, x_3\}$$
$$F = \{x_2, x_4\}$$

Notice that any assignment of values to the free variables yields a solution of the system. In particular, the assignments

$$\begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}; \quad \begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

yield linearly independent solutions:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}; \quad \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ -2 \\ 1 \end{bmatrix}$$

Since $\dim N(A) = 2$ the two solutions form a basis.

3. Remark: If the variables are relabelled so that the pivot variables are in the initial columns.

$$H = \begin{bmatrix} 1 & 0 & 2 & -2 \\ 0 & 1 & 0 & 2 \\ \hline O & O \end{bmatrix}$$

which has the form

$$\begin{bmatrix}
I & F \\
O & O
\end{bmatrix}$$

Then

$$H\begin{bmatrix} -F \\ I \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Thus, up to a relabelling of the variables the columns of $\begin{bmatrix} -F \\ I \end{bmatrix}$ yield a basis for N(A). In this case

$$\begin{bmatrix}
 -F \\
 I
 \end{bmatrix} =
 \begin{bmatrix}
 -2 & 2 \\
 0 & -2 \\
 1 & 0 \\
 0 & 1
 \end{bmatrix}$$

4. Example.

Let $\alpha = (1, 2, 3, 4) \in \mathbb{R}^4$. Find a basis for the subspace α^{\perp} .

Solution. Let $v=(a,b,c,d)\in\mathbb{R}^4$. Then,

$$v \in \alpha^{\perp} \Leftrightarrow a + 2b + 3c + 4d = 0$$

 $\Leftrightarrow v^{T} \in N(H)$

where $H = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$. Notice that H is in Hermite normal form with free

¹http://pennance.us

variables $F = \{x_2, x_3, x_4\}$. Every assignment of values to the free variables yields a solution. In particular, the choices:

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}; \quad \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}; \quad \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

yield three linear independent solutions:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}; \begin{bmatrix} -3 \\ 0 \\ 1 \\ 0 \end{bmatrix}; \begin{bmatrix} -4 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

These vectors comprise a basis for N(A) and hence α^{\perp} .

5. Example. Find a basis for the subspace

$$W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$

Solution.

Notice,

$$v \in W \Leftrightarrow \begin{cases} a + 3b = 0 \\ c + 3d = 0 \end{cases}$$
$$\Leftrightarrow (a, b, c, d)^T \in N(A)$$

where $A = \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 0 & 1 & 3 \end{bmatrix}$. Notice, A is in Hermite normal form. Since the variables x_2 and x_4 are free the assignements:

$$\begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}; \quad \begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

yield independent solutions:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix}; \quad \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -3 \\ 1 \end{bmatrix}$$

comprising a basis for N(A). The corresponding basis for W is

$$\left\{ \begin{bmatrix} -3 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ -3 & 1 \end{bmatrix} \right\}$$

6. Example. Find a basis for the subspace:

$$W = \{ p \in \mathcal{P}_3 : p(1) = 0; \ p(2) = 0 \}$$

Solution.

Let
$$v = a + bx + cx^2 + dx^3 \in \mathcal{P}_3$$
.

Notice,

$$v \in W \Leftrightarrow \begin{cases} a+b+c+d=0\\ a+2b+4c+8d=0 \end{cases}$$
$$\Leftrightarrow (a,b,c,d)^T \in N(A)$$

where

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 3 & 7 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & -2 & -6 \\ 0 & 1 & 3 & 7 \end{pmatrix}$$

Since the variables x_3 and x_4 are free, the assignments:

$$\begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}; \quad \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

yield the basis

$$\left\{ \begin{bmatrix} 2\\-3\\1\\0 \end{bmatrix}, \begin{bmatrix} 6\\-7\\0\\1 \end{bmatrix} \right\}$$

for N(A). It is easy to verify that the corresponding polynomials

$$x^2 - 3x + 2$$
$$x^3 - 7x + 6$$

form a basis for W.