Convex Sets

© Prof. Philip Pennance¹ -Version: September 26, 2016

1. A subset S of an affine space E is called convex if

$$\forall x, y \in S, \quad \overline{xy} \subseteq S$$

2. Definition.

Let E be an affine space and $x_1, x_2, \ldots x_n \in E$. An affine combination $\sum \lambda_i x_1$ with $\sum \lambda_i = 1$ is called a mass distribution if $\lambda_i \geq 0$, $1 \leq i \leq n$..

3. Claim.

Let $S = \{x_1, x_2, \dots x_n\}$ be a finite set of points in an affine space. Then the set H(S) of all mass distributions of S is convex.

Proof.

Let $p, q \in H(S)$. Then there exist constants λ_i, λ'_i $1 \le i \le n$

$$p = \sum \lambda_i x_i, \quad \sum \lambda_i = 1, \quad \lambda_i \ge 0$$
$$q = \sum \lambda'_i x_i, \quad \sum \lambda'_i = 1, \quad \lambda'_i \ge 0$$

If 0 < t < 1 then

$$(1-t)p + tq = \sum_{i=1}^{n} [(1-t)\lambda_i + t\lambda_i']x_i$$
$$= \sum_{i=1}^{n} \mu_i x_i$$

where $\mu_i = (1 - t)\lambda_i + t\lambda'_i$. Since $\sum \mu_i = 1$ and $\mu_i \ge 0$, $1 \le i \le n$, $(1 - t)p + tq \in H$

Hence H is convex.

- 4. H(S) is called the *convex hull* of S.
- 5. Examples
 - (a) Let $x_1, x_2 \in \mathbb{R}^2$, then $H(x_1, x_2)$ is the segment

$$\lambda_1 x_1 + \lambda_2 x_2$$

where
$$\lambda_1 + \lambda_2 = 1$$
, $\lambda_i \ge 0$

- (b) Let $x_1, x_2, x_3 \in \mathbb{R}^2$ be non colinear, then $H(x_1, x_2, x_3)$ is a triangle.
- (c) Let o = (0,0) and let $x_1, x_2 \in \mathbb{R}^2$. Then $H(o, x_1, x_2, x_1 + x_2)$ is a paralellogram.
- 6. Claim.

Let A be any convex set containing $S = \{x_1, x_2, \dots x_n\}$. Then $H(S) \subseteq A$. Proof.

(By induction on |S|). If $S = \{x_1\}$ then $H(S) = S \subseteq A$ and the result is true. Let $n \in \mathbb{N}$ and S a set with n elements. Let $x \in S$. Then there exist $t_1, t_2, t_n \in \mathbb{R}$ such that

$$x = \sum_{i=1}^{n-1} t_i x_i + t_n x_n$$

If $t_n = 1$ then $x = x_n \in A$. If $t_n \neq 1$ then

$$x = (1 - t_n) \sum_{i=1}^{n-1} \left(\frac{t_i}{1 - t_n} \right) x_i + t_n x_n$$
$$= (1 - t_n) y + t_n x_n$$

where

$$y = \sum_{i=1}^{n-1} \frac{t_i}{1 - t_n} x_i$$

Since

$$\sum_{i=1}^{n-1} \frac{t_i}{1 - t_n} = 1,$$

it follows that $y \in H(x_1, x_2, ..., x_{n-1})$ But A is a convex set containing $x_1, x_2, ... x_n$ so by the induction hypothesis

$$H(x_1, x_2, \ldots, x_{n-1}) \subseteq A$$

¹http://pennance.us

in particular $y \in A$. By convexivity of A it follows that $x \in A$ and so

$$H(x_1, x_2, \dots, x_n) \subseteq A$$

which was to be proven.

7. Illustration of the induction step of the proof for n=3

$$x = \frac{1}{3}x_1 + \frac{1}{3}x_2 + \frac{1}{3}x_3$$
$$= \frac{2}{3}(\frac{1}{2}x_1 + \frac{1}{2}x_2) + \frac{1}{3}x_3$$
$$= \frac{2}{3}y + \frac{1}{3}x_3$$

where

$$y = \frac{1}{2}x_1 + \frac{1}{2}x_2 \in H(x_1, x_2)$$

8. $\{t_1u + t_2v : t_1, t_2 \in \mathbb{R} + \text{Constraint}\}\$

Constraint	Set	Drawing
$t_1,t_2\in\mathbb{R}$	Plane	0
$0 \leq t_1, t_2$	Angle	
$0 \le t_1, t_2 \le 1$	Parallelogram	
$\begin{cases} 0 \le t_i \le 1 \\ t_1 + t_2 \le 1 \end{cases}$	Triangle	
$\begin{cases} 0 \le t_i \le 1 \\ t_1 + t_2 = 1 \end{cases}$	Segment	v • u
$\begin{cases} 0 \le t_i \le 1 \\ t_1 + t_2 = \frac{1}{2} \end{cases}$	Segment	$\frac{v}{2}$
$t_1 + t_2 = 1$	Line	0