Change of Variables Theorem

Philip Pennance¹ Draft: – March 2022.

1. One dimensional case.

Let $I \subseteq \mathbb{R}$ be an interval and

$$x:[a,b]\to I$$

be a differentiable function with continuous derivative. Suppose that $f:I\to\mathbb{R}$ is continuous. Then

$$\int_{x(a)}^{x(b)} f(x) dx = \int_{a}^{b} f \circ x(\theta) \cdot x'(\theta) d\theta.$$

Proof.

Let F be an antiderivative of f. Then $F \circ x$ is an antiderivative of $f \circ x \cdot x'$. It follows that both sides are equal to $(F \circ x)(b) - (F \circ x)(a)$.

2. Example.

Let $x: [0, \frac{\pi}{2}] \to [0, 1]$ be given by

$$x(\theta) = \sin \theta.$$

Then,

$$\int_0^1 \sqrt{1 - x^2} \, dx = \int_0^{\frac{\pi}{2}} \sqrt{1 - \sin^2 \theta} \cdot \cos \theta \, d\theta$$
$$= \int_0^{\frac{\pi}{2}} \cos^2 \theta \, d\theta$$
$$= \frac{\pi}{4}.$$

3. Two dimensional case.

Let $R \subseteq \mathbb{R}^2$ be a rectangle and

$$X:R\to\mathbb{R}^2$$

a function which is C^1 -invertible on the interior of R. Let $f:X(R)\to\mathbb{R}$ be continuous, then

$$\begin{split} \int_{X(R)} f &= \int_R f \circ X \cdot |\det DX| \\ &= \iint_R f \circ X(u,v) |\det DX(u,v)| \, du \, dv. \end{split}$$

4. Example.

In the (r, θ) plane let R be the rectangle $[0, \rho] \times [0, \frac{\pi}{2}]$

Let $X: R \to \mathbb{R}^2$ be given by

$$X(r,\theta) = (r\cos\theta, r\sin\theta)$$

Then DX has matrix

$$J = \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix}$$

and

$$\det DX = \det J = r.$$

Then, X maps the rectangle R bijectively onto the sector X(R) shown below.

If $f: X(R) \to \mathbb{R}$ is a continuous function on the sector X(R) then

$$\iint_{X(R)} f(x,y) dx dy = \int_0^{\frac{\pi}{2}} \int_0^{\rho} f(r\cos\theta, r\sin\theta) r dr d\theta.$$

¹https://pennance.us