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. Definition.

Let F' be a field. A functionp: F — F
is called a polynomial over F if there
exist ag,ay,...,a, € F such that

p(z) = ap + a1z + asr® - - + a,a”

. Notation.

The set of all polynomials over F' will
be denoted F[x]. Henceforth F' will be
either Q, R or C. Thus, for example,
Q[z] will denote the set of polynomials
with rational coefficients.

. Definition.

A polinomial p € Flx] has degree n
if there exist ag,aq,...,a, € F, with
a, # 0 such that

p(z) = ap + a1z + axx® - - + a,z™.

The zero polynomial has degree —oo.
. Remark.

It is assumed that the student is fa-
miliar with the usual addition (+) and
multipliction (or convolution) (x) of
polynomials.

. Let f,g € F[z] where F is a field. Then,
(a) d(f +g) < max{d(f),d(g).}

(b) d(f *g) = d(f) + d(g).

. Claim. [omit]

Let F' be field. Then (F[z],+,%) is a
ring. lLe.,

(a) (Flz],+, ) is an abelian group.
(b) * associative.

(©) fx(g+h)=Ffxg+[fxh

(d) (g+h)«f=gxf+hxf
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Division Theorem.

Let F' be afield and let f, g € F|x], with
g # 0. Then there exist unique polyno-
mials ¢,r € F[z] such that f = qg +r
and either » =0 or d(r) < d(g) (and so
F[z] is a Euclidean domain. )

Special cases of the Division Theorem:

(a) Remainder Theorem.
Let f € Clz] and g(z) = z — a
where a € C, then:

flx) = q(x) (@ —a)+r
where r is a constant.
r = f(a).
(b) Factor Theorem.
Let f € C[z] and a € C. Then the

following are equivalent:

Moreover

i. x — a is a factor of f.
ii. f(a)=0.

Fundamental Theorem of Algebra

Let f € C[z| with deg f > 1. Then f
has a root o« € C.

Corollary.

If f € Cl[x] has degree n > 0, then f
has a factorization of the form

f(@) =clx —wi)(@ —ws) - (x — wn)
—c- H(w —w;). (1)

where ¢, wy, ws, ..., w, € C.

Proof (By induction).

If deg f = 1 the result is trivial. Let
n € N and assume that the result holds
for all polynomials of degree greater
than zero but less than n. Let f be a
polynomial of degree n. By the funda-
mental theorem of algebra Jda € C such
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that f(a) = 0. By the division theo-
rem, x — «) is a factor and there exists
a polynomial ¢ such that

fz) =

Since degq = n — 1, by the induction
hypothesis, it has the form

(z — a)q(x).

c(lx —w)(z —wy) - (T — wy_q).

It follows that

where w,, = a.
Remark.

In the case n = 2 the factorization guar-
anteed by the Fundamental Theorem is
found by completing the square. For
example:

2 —dr+5=(r—-2)7+1
=(r—2)?*—
=(x—2—10)(x—2+1).

Notice that this factorization has the

form
(x —2)(x — 2)

where z = 2 4 ¢. This is not an acci-
dent but rather is a consequence of the
following claim.

Claim.
Let f € R[z] and z € C. Then:

F() =0 f(z) =

Thus, if a polynomial has real coeffi-
cients and z = a + i is a root, then so
is the conjugate z = a — i

Corollary.

Let p € R[x] be a polynomial of degree
n with real coefficients. If p has m real
roots r,79..., 7, and 2/ complex roots

(Oél + iﬂl), (052 :l: iﬁg), e (Ozl :]: Zﬁl)
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then p has factorisation of the form:

l

cHx—rZ H x—ozj ]2)}

Jj=1 J=1

Proof.

By the fundamental theorem of algebra,
p must have the form (1). If z = a+1if
is a complex root of p then so to is z.
Hence, by the factor theorem, p has a
factor (z — z)(x — z). But

(x—2)(x—2) =2 — (24 2)x + 22
=2 —2ax+ o’ + 32
=(r—a)’+ 67

The result follows by applying this ob-

servation to every conjugate pair of
roots.

Remark.

It is seen from the preceeding proof that
if z € C, then

(x — 2)(x — 2) = 2° — 2Re(2)z + |2*]*.

Example.

Let z = 2 + i. Then Re(z) = 2 and

|z]? =5, and so

(x —2)(x — 2) = 2® — 4w + 5.

Definition.

A function of the form

where p(x) and ¢(z) are polynomials is
called a rational function.

For purposes of integration, we inter-
ested in the case degp < deggq. This
can always be achieved by polynomial
division:
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v +x -+
r—1 r—1
n 2x
=z
r—1
20 — 2+ 2
:x—'——
r—1
(x+2)+ 2
= (x
r—1

By cancellation, we can assume that p
and ¢ have no common factors (and,
hence, no common zeros). If all com-
mon zeros (if any) have been cancelled,
any remaining zero of ¢(z) is called a
singularity or pole of the rational expre-
sion.

Partial Fraction Decomposition

Let p,q € R[z] with degp < degg.
Then § is a sum of terms of the fol-
lowing forms:

For each factor (z — w) of ¢ with mul-
tiplicity m, there is a term:

For each factor (x — )2 + 3%) of ¢ with
multiplicity r there is a term:

(LL‘ — Oé>2 + 57;2.

=1

Example.

If g(z) = (z — 2)*[(x + 1)* + 2], then
the exist constants Ay, Ay, As, By, Cf,
B, C5 such that

1A A A,

¢ 2 o2 T w3y
Bix + C Bsx + Cy
GriE+2 @+ 121 2P

21.

22.

Example

3 3
41 (z+1)(22 -2 +1)
A Bz +C

= -
z+1 22—z+1

(z+1)(Br+C)+ (2 —x+1)A

(x+1)(22 =2z +1)

?*(A+B)+z(—-A+B+C)+A+C

(x+1D)(22—z+1)

Since the denominators are equal the
numerators can be equated. Hence

A+B=0
—-A+B+C=0
A+C=3
Hence A=1, B=-1, C =2 and
SO
3 1 x—2

a73+1:x+1_m2—m—|—1

Example.

Let p(z) = x and ¢(x) = (z—1)*. Then
p Ay Ay
q_x—1+(x—1)2

As Ay
MECES VRN

Multiplying by ¢ gives:
T = Al<$—1)3—|—A2([E—1)2+A3($—1)+A4

Substituting x = 1 shows that A, = 1.
Differentiating yields

1=3A(z — 1) +2Ay(z — 1) + As.
Substituting x = 1 shows that A3 = 1.
Differentiating again:

Substituting x = 1 shows that A = 0.
Differentiating yet again:

0=3-2-4

Hence A; = 0. It follows that
T 1 1

-1 @-1F (-1




23. Claim. 25. Example using (3) .

Suppose that ¢ € R[z] is a polynomial x+2 x4+ 2
of degree n, with distinct non zero roots 22+ 4z + 3 - (z+3)(z+1)
w;, 1<i<mn, w; €Csothat A, A,
=Nz —w)(z—wy)...(x—wy,) S x+3 x4l
then there exist constants A;,--- A, Let
o a4 A pla)=c+2, qle)=a®+do+3.
T n
p(x):a:—lw x—2w +‘”+x—w Then
E)roof ! 2 " ¢ (z) =2r + 4.
. Hence, using (3)
We seek Aq, As, ..., A, such that:
- Aa@) | @) A) a=pd 1, ) 1
r—w; T —ws T — wy ¢(=3) 2 ¢(-1) 2
= ANz —wy)(r —ws) ... (xr—w,) and so
A2q Anq T+ 2 _ % %
+x—w2+.”+x—wn a:2+4x+3_x+3+:c+1
Since q(w;) = 0, putting x = w; yields: 26. Example:
p(wy) = A A (w1 —ws) (wy—ws3) . . . (w1 —w,,) 3 3
and so 34+1 (z4+1)(22—z+1)
A = mp& (2) — 3 -
[ (w1 — w;) (x+1)(z —w)(z —w)
j;ﬁl J _ Al A2 A3
It is left as a simple exercise in differen- r+l r-w T-w
tiation to show that where w is a complex root of —1. Let
A — p(wy) p(z) = 3 and q(x) = 23 s0 that
L g(wy) ¢ (z) = 32°.
The same argument shows that: p(—1)
, Then, by (3), A; = =1,
q (W
w 1
Conversely, it is easy to verify that the Ay = p/((w)) =2 —Ww
A; obtained satisfy the required partial o g 3
fraction decomposition. Similarly, A3 = —w.
24. Example using (2) . Hence )
2$2+1’+1 Al +A2+A3 331: 11_ d — d
= . 2+ T+ r—w T—W
(x—l).(x—2)(x—3) r—1 -2 z-3 T (@ +@)2 + 2@
Using (2): T o+l 2 —r+1
A - 202 + x4+ 1 _ o 1 x—2
- -3)|,, 7 T+l 2—z+41
222 1
Ay = L :—x i 3 = —11, (Recall that in a quadratic 2 + bx + ¢,
(z _2 )@ =3) ],y The product of the roots is ¢ and their
A3: 2z +CC—|—1 =11 Sumis—b.)
C-De-2),_,




Exercises— Rational Functions

Prof. Philip Pennance >

1. Let

plz) =22 +x+1
g(r) = (z = (= = 2)(z = 3)

Find Ay, Ay, Az such that

(b)

2 —1
r+1
22+ 5x+6
22+ 22+ 3
D e re-9
1
() (x —a)(z —b)(x —¢)

TT+ S )
mlf(l#b.

() 32 + 2+ 1
¥ D220 +a+2?)
3. Let z,w € C. Show that:

()

ifa#0b+#ec.

(f)

(a) (z4+w)=z+w.
(b) z" = (z)" for all n € N.

4. Let p be a polynomial with real coeffi-
cients. Show that if w € C is a root of
p then so is w.

5. Let p € R[x] be a polynomial with real
coefficients. Show that if § + iy is a
root of p, where 3 and v are real, then
(z — B)? +~? is a factor.

6. Use the substitution ¢ = tan (g) to

evaluate / secx dx.

Zhttps://pennance.us

Version: — February 2019.

7. A polynomial ¢ € R[z| is of the low-
est degree possible such that ¢(2) =
g1 +i) =0, g(z) > 0 for all z € R
and ¢(1) = 1.

(a) Find q.

(b) Find the partial fraction expan-
sion of 1/q.

(© Find [ e

q(x)
8. Evaluate

1000
(a) / P dx

z+3
b [ =22 g
()/a:2—|—2x+2 *

(©) / x?ledx

() / xfildx

(©) / (x2f2_3:1+5)3d$
(f) /x31—xdx

() /mdﬂﬁ
(k) /x3j—27 da

_ x
(i) /—xQ—l—x—l—ldm

9. Integrate by reduction to rational func-
tions:

(a) /13 v dx

302+

(b) / ST

cos?x — 3cosx

(©) / cosht y
sinh?# + sinh* ¢
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