
Math 3152 - Rational Functions
Prof. Philip Pennance1 –March 16, 2020

1. Definition.

Let F be a field. A function p : F → F
is called a polynomial over F if there
exist a0, a1, . . . , an ∈ F such that

p(x) = a0 + a1x+ a2x
2 · · ·+ anx

n

2. Notation.

The set of all polynomials over F will
be denoted F [x]. Henceforth F will be
either Q, R or C. Thus, for example,
Q[x] will denote the set of polynomials
with rational coefficients.

3. Definition.

A polinomial p ∈ F [x] has degree n
if there exist a0, a1, . . . , an ∈ F , with
an ̸= 0 such that

p(x) = a0 + a1x+ a2x
2 · · ·+ anx

n.

The zero polynomial has degree −∞.

4. Remark.

It is assumed that the student is fa-
miliar with the usual addition (+) and
multipliction (or convolution) (∗) of
polynomials.

5. Let f, g ∈ F [x] where F is a field. Then,

(a) d(f + g) ≤ max{d(f), d(g).}

(b) d(f ∗ g) = d(f) + d(g).

6. Claim. [omit]

Let F be field. Then (F [x],+, ∗) is a
ring. I.e.,

(a) (F [x],+, ∗) is an abelian group.

(b) ∗ associative.

(c) f ∗ (g + h) = f ∗ g + f ∗ h

(d) (g + h) ∗ f = g ∗ f + h ∗ f

7. Division Theorem.

Let F be a field and let f, g ∈ F [x], with
g ̸= 0. Then there exist unique polyno-
mials q, r ∈ F [x] such that f = qg + r
and either r = 0 or d(r) < d(g) (and so
F [x] is a Euclidean domain. )

8. Special cases of the Division Theorem:

(a) Remainder Theorem.

Let f ∈ C[x] and g(x) = x − a
where a ∈ C, then:

f(x) = q(x)(x− a) + r

where r is a constant. Moreover
r = f(a).

(b) Factor Theorem.

Let f ∈ C[x] and a ∈ C. Then the
following are equivalent:

i. x− a is a factor of f.

ii. f(a) = 0.

9. Fundamental Theorem of Algebra

Let f ∈ C[x] with deg f ≥ 1. Then f
has a root α ∈ C.

10. Corollary.

If f ∈ C[x] has degree n > 0, then f
has a factorization of the form

f(x) = c(x− w1)(x− w2) · · · (x− wn)

= c ·
n∏

j=1

(x− wi). (1)

where c, w1, w2, . . . , wn ∈ C.

Proof (By induction).

If deg f = 1 the result is trivial. Let
n ∈ N and assume that the result holds
for all polynomials of degree greater
than zero but less than n. Let f be a
polynomial of degree n. By the funda-
mental theorem of algebra ∃α ∈ C such
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that f(α) = 0. By the division theo-
rem, x− α) is a factor and there exists
a polynomial q such that

f(x) = (x− α)q(x).

Since deg q = n − 1, by the induction
hypothesis, it has the form

c(x− w1)(x− w2) · · · (x− wn−1).

It follows that

f = c ·
n∏

i=1

(x− wi).

where wn = α.

11. Remark.

In the case n = 2 the factorization guar-
anteed by the Fundamental Theorem is
found by completing the square. For
example:

x2 − 4x+ 5 = (x− 2)2 + 1

= (x− 2)2 − i2

= (x− 2− i)(x− 2 + i).

Notice that this factorization has the
form

(x− z)(x− z̄)

where z = 2 + i. This is not an acci-
dent but rather is a consequence of the
following claim.

12. Claim.

Let f ∈ R[x] and z ∈ C. Then:

f(z) = 0 ⇒ f(z̄) = 0.

Thus, if a polynomial has real coeffi-
cients and z = α+ βi is a root, then so
is the conjugate z̄ = α− βi

13. Corollary.

Let p ∈ R[x] be a polynomial of degree
n with real coefficients. If p has m real
roots r1, r2 . . . , rm and 2l complex roots

(α1 ± iβ1), (α2 ± iβ2), . . . (αl ± iβl)

then p has factorisation of the form:

c ·
m∏
j=1

(x− ri) ·
l∏

j=1

[
(x− αj)

2 + β2
j )
]

Proof.

By the fundamental theorem of algebra,
p must have the form (1). If z = α+ iβ
is a complex root of p then so to is z̄.
Hence, by the factor theorem, p has a
factor (x− z)(x− z̄). But

(x− z)(x− z̄) = x2 − (z + z̄)x+ zz̄

= x2 − 2αx+ α2 + β2

= (x− α)2 + β2)

The result follows by applying this ob-
servation to every conjugate pair of
roots.

14. Remark.

It is seen from the preceeding proof that
if z ∈ C, then

(x− z)(x− z̄) = x2 − 2Re(z)x+ |z2|2.

15. Example.

Let z = 2 + i. Then Re(z) = 2 and
|z|2 = 5, and so

(x− z)(x− z̄) = x2 − 4x+ 5.

16. Definition.

A function of the form

f(x) =
p(x)

q(x)

where p(x) and q(x) are polynomials is
called a rational function.

17. For purposes of integration, we inter-
ested in the case deg p < deg q. This
can always be achieved by polynomial
division:
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x2 + x

x− 1
=

x2 − x+ 2x

x− 1

= x+
2x

x− 1

= x+
2x− 2 + 2

x− 1

= (x+ 2) +
2

x− 1

18. By cancellation, we can assume that p
and q have no common factors (and,
hence, no common zeros). If all com-
mon zeros (if any) have been cancelled,
any remaining zero of q(x) is called a
singularity or pole of the rational expre-
sion.

19. Partial Fraction Decomposition
Let p, q ∈ R[x] with deg p < deg q.
Then p

q
is a sum of terms of the fol-

lowing forms:

For each factor (x − w) of q with mul-
tiplicity m, there is a term:

A1

x− w
+

A2

(x− w)2
+ · · ·+ Am

(x− w)m
.

For each factor (x−α)2 + β2) of q with
multiplicity r there is a term:

r∑
i=1

Bix+ Ci

(x− α)2 + βi
2 .

20. Example.

If q(x) = (x − 2)3[(x + 1)2 + 2]2, then
the exist constants A1, A2, A3, B1, C1,
B2, C2 such that

1

q
=

A1

x− 2
+

A2

(x− 2)2
+

A3

(x− 3)3

+
B1x+ C1

(x+ 1)2 + 2
+

B2x+ C2

[(x+ 1)2 + 2]2

21. Example

3

x3 + 1
=

3

(x+ 1)(x2 − x+ 1)

=
A

x+ 1
+

Bx+ C

x2 − x+ 1

=
(x+ 1)(Bx+ C) + (x2 − x+ 1)A

(x+ 1)(x2 − x+ 1)

=
x2(A+B) + x(−A+B + C) + A+ C

(x+ 1)(x2 − x+ 1)

Since the denominators are equal the
numerators can be equated. Hence

A+B = 0

−A+B + C = 0

A+ C = 3

Hence A = 1, B = −1, C = 2 and
so

3

x3 + 1
=

1

x+ 1
− x− 2

x2 − x+ 1

22. Example.

Let p(x) = x and q(x) = (x−1)4. Then

p

q
=

A1

x− 1
+

A2

(x− 1)2

+
A3

(x− 1)3
+

A4

(x− 1)4

Multiplying by q gives:

x = A1(x−1)3+A2(x−1)2+A3(x−1)+A4

Substituting x = 1 shows that A4 = 1.
Differentiating yields

1 = 3A1(x− 1)2 + 2A2(x− 1) + A3.

Substituting x = 1 shows that A3 = 1.
Differentiating again:

0 = 3 · 2A1(x− 1) + 2A2

Substituting x = 1 shows that A2 = 0.
Differentiating yet again:

0 = 3 · 2 · A1

Hence A1 = 0. It follows that

x

(x− 1)4
=

1

(x− 1)3
+

1

(x− 1)4
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23. Claim.

Suppose that q ∈ R[x] is a polynomial
of degree n, with distinct non zero roots
wi, 1 ≤ i ≤ n, wi ∈ C so that

q = λ(x− w1)(x− w2) . . . (x− wn)

then there exist constants A1, · · · , An

such that
p(x)

q(x)
=

A1

x− w1

+
A2

x− w2

+ · · ·+ An

x− wn

Proof.

We seek A1, A2, . . . , An such that:

p =
A1q(x)

x− w1

+
A2q(x)

x− w2

+ · · ·+ Anq(x)

x− wn

= A1λ(x− w2)(x− w3) . . . (x− wn)

+
A2q

x− w2

+ · · ·+ Anq

x− wn

Since q(w1) = 0, putting x = w1 yields:

p(w1) = A1λ(w1−w2)(w1−w3) . . . (w1−wn)

and so

A1 =
p(w1)

m∏
j ̸=1

(w1 − wj)
(2)

It is left as a simple exercise in differen-
tiation to show that

A1 =
p(w1)

q′(w1)

The same argument shows that:

Ai =
p(wi)

q′(wi)
i = 2, ..., n (3)

Conversely, it is easy to verify that the
Ai obtained satisfy the required partial
fraction decomposition.

24. Example using (2) .

2x2 + x+ 1

(x− 1)(x− 2)(x− 3)
=

A1

x− 1
+

A2

x− 2
+

A3

x− 3
.

Using (2):

A1 =
2x2 + x+ 1

(x− 2)(x− 3)

∣∣∣∣
x=1

= 2,

A2 =
2x2 + x+ 1

(x− 1)(x− 3)

∣∣∣∣
x=2

= −11,

A3 =
2x2 + x+ 1

(x− 1)(x− 2)

∣∣∣∣
x=3

= 11,

25. Example using (3) .

x+ 2

x2 + 4x+ 3
=

x+ 2

(x+ 3)(x+ 1)

=
A1

x+ 3
+

A2

x+ 1

Let

p(x) = x+ 2, q(x) = x2 + 4x+ 3.

Then
q′(x) = 2x+ 4.

Hence, using (3)

A1 =
p(−3)

q′(−3)
=

1

2
, A2 =

p(−1)

q′(−1)
=

1

2

and so

x+ 2

x2 + 4x+ 3
=

1
2

x+ 3
+

1
2

x+ 1

26. Example:

3

x3 + 1
=

3

(x+ 1)(x2 − x+ 1)

=
3

(x+ 1)(x− ω)(x− ω)

=
A1

x+ 1
+

A2

x− ω
+

A3

x− ω̄

where ω is a complex root of −1. Let
p(x) = 3 and q(x) = x3,so that

q′(x) = 3x2.

Then, by (3), A1 =
p(−1)

q′(−1)
= 1,

A2 =
p(ω)

q′(ω)
=

1

ω2
= −ω

Similarly, A3 = −ω̄.

Hence

3

x3 + 1
=

1

x+ 1
− ω

x− ω
− ω̄

x− ω̄

=
1

x+ 1
− (ω + ω̄)x+ 2ωω̄

x2 − x+ 1

=
1

x+ 1
− x− 2

x2 − x+ 1

(Recall that in a quadratic x2 + bx+ c,
The product of the roots is c and their
sum is −b. )
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Exercises– Rational Functions
Prof. Philip Pennance 2 Version: – February 2019.

1. Let

p(x) = 2x2 + x+ 1

q(x) = (x− 1)(x− 2)(x− 3)

Find A1, A2, A3 such that

p(x)

q(x)
=

A1

x− 1
+

A2

x− 2
+

A3

x− 3
.

2. Find the partial fraction expansion of:

(a)
x2

1 + x

(b)
1

x2 − 1

(c)
x+ 1

x2 + 5x+ 6

(d)
x2 + 2x+ 3

(x− 1)2(x− 4)

(e)
1

(x− a)(x− b)(x− c)
if a ̸= b ̸= c.

(f)
rx+ s

(x+ a)(x+ b)
if a ̸= b.

(g)
3x2 + 2x+ 1

(x− 1)(x− 2)2(1 + x+ x2)

3. Let z, w ∈ C. Show that:

(a) (z + w) = z + w.

(b) zn = (z)n for all n ∈ N.

4. Let p be a polynomial with real coeffi-
cients. Show that if w ∈ C is a root of
p then so is w.

5. Let p ∈ R[x] be a polynomial with real
coefficients. Show that if β + iγ is a
root of p, where β and γ are real, then
(x− β)2 + γ2 is a factor.

6. Use the substitution t = tan
(x
2

)
to

evaluate

∫
secx dx.

7. A polynomial q ∈ R[x] is of the low-
est degree possible such that q(2) =
q(1 + i) = 0, q(x) ≥ 0 for all x ∈ R
and q(1) = 1.

(a) Find q.

(b) Find the partial fraction expan-
sion of 1/q.

(c) Find

∫
1

q(x)
dx.

8. Evaluate

(a)

∫
1000

x2 + 2x
dx

(b)

∫
x+ 3

x2 + 2x+ 2
dx

(c)

∫
x3

x2 + 1
dx

(d)

∫
x8

x4 − 1
dx

(e)

∫
x− 1

(x2 + 2x+ 5)3
dx

(f)

∫
1

x3 − x
dx

(g)

∫
1

x2 + 2x+ 5
dx

(h)

∫
1

x3 + 27
dx

(i)

∫
x

x2 + x+ 1
dx

9. Integrate by reduction to rational func-
tions:

(a)

∫ 3

1/3

√
x

x2 + x
dx

(b)

∫
sinx

cos2 x− 3 cosx
dx

(c)

∫
cosh t

sinh2 t+ sinh4 t
dt.
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