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. Definition.

A real number L is a limit of a sequence
of real numbers if every open interval
containing L contains all but a finite
number of terms of the sequence.

. Claim.

A sequence can have at most one limit.

Proof.

Suppose L and L’ be limits of a se-
quence. Then there exists an open in-
terval I containing L and an open inter-
val I’ containing L’ and both of these
intervals contain all but a finite num-
ber of terms of the sequence. If L # L/,
I and I’ can be chosen to be disjoint
which (exercise) leads to a contradic-
tion. Thus, it must be that L = L'

. Notation.

If L is the limit of a sequence (a,) we
write

lim a, = L
n—oo

and we say that the sequence converges
to L or that the sequence is convergent.
A sequence with no limit is called di-
vergent.

. Remark.

The definition of limit gives precise
meaning to the rather vague phrase “a,
approaches L asn approaches co”. This
statement does not serve as the defini-
tion of limit because neither the nature
of the “approach” nor the concept of co
are explained.

. Lemma.

Let I is any open interval containing L,

then within I can be found an open in-
terval of the form |z — L| < e

. Theorem.

Let (an) be a sequence. The following
are equivalent,

(a) lim a, =L
n—oo

(b) For every € > 0, all but a finite
number of terms of the sequence
are contained in the interval with
center L and radius e.

(c) Ye >0, IN such that Vn € N

n>N = l|a, — L| <e.

. Example.

Let (a,) be the sequence given by

. n
Cn+ 1

Qn

Show that lim a, = 1.

n—oo

Solution.

Let € > 0 be arbitrary. We must find a
natural number N such that?

d(an,1) <e (1)

whenever n > N. Now

d(a,,1) = o

n ' 1
—1

Moreover, since N is unbounded above
there exists a natural number N such
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2Notice that the value of N will depend on the value of €. The smaller the value of € the larger N must
be in order that the open interval determined by equation (1) contains all terms after the N’th. Figures 3
and 4 suggest that that if e = 0.2 then N = 5 works and if € = 0.1 then N =9 suffices.
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that Ne > 1. It follows that:

1
n>N-—=n>-—
€

—en > 1

1
- —<e
n

%
n+1

— d(ap,1) <e

Since N has the required property, we

conclude that

<€

8. Example.

Let (a,) be the constant sequence
given by a, = 5,n € N. Show that

lim a, = 5.
n—oo

Solution.

Let € > 0. It is easy to find N such
that |a, — 5| < € whenever n > N. Let
N = 24 (any other natural number will
do). Since |a, — 5| =0, for all n € N it
is clearly true that |a, — 5| < € when-
ever n > 24. It follows that lim a,, = 5.

n—oo

. More generally, if a,, = ¢ for all n € N

n
im =1 then lim a, = c.
as as aq aso
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Figure 3. n > 5 — |a,, — 1| < 0.2.

Figure 4. n > 9 — |a,, — 1| < 0.1.

10. Example.

Let (a,) be the sequence given by
1

Show using the definition of the limit of
a sequence that

lim a, = 0.
n—oo
Solution.

Let € > 0 Notice (exercise) that - <
% for all n > 2. Since N is unbounded,

there exists a natural number N > 1
such that Ne > 2. It follows that:

n>N— ne>2

2
— — < €
n
. 2 .
Since < —, it follows that
n— n
1
n>N— <e€
n—1
1
— — 0| <e
n—1

— d(a,,0) <€
which proves that
=1

. 1
lim
n—oo 1, —

11.

12.

13.

14.

The next theorem reduces the calcula-
tion of complex limits to simpler ones.

Theorem.

Let (a,) and (b,) be sequences. If
lim a, = L and lim b,, = M then:

n—oo n—oo
(a) lim (a,x£b,) =L+ M
n—oo
(b) lim (a,-b,)=L-M
n—oo
(c¢) If M # 0 and b, # 0 for all n then

Example.

Find the limit of the sequence (a,)
given by

a, =3/n
Solution.
Notice a,, = -y, where z,, = 1/n and
yn = 3, n € N. Now, it is easy to

show that lim x, =0 and lim y, = 3.
n—oo n—oo

Using part (b) of the above theorem
yields
lima,=0-3=0

n—oo

Example.
Find the limit of the sequence (a,)
given by

a, = —.
n2

Solution.



15.

16.

Let z,, = 1/n. Then
Un = Ty * Ty

Since lim z, = 0.
n—oo

lim a, = lim z,, - lim =z,
n—oo n—oo n—oo

=0-0
=0.

Using mathematical induction (exer-
cise) it is now easy to show that

for any natural number p > 0.

Example.

Find the limit of the sequence

n? + 3n
T, = .
3+ n?
Solution.
n®>  3n
L
"3 p?
n2 ' n2
3
14+ —
_ n
3
3 +1
But
. 3 . .
lim (1+—) = lim 1+ lim —
n—oo n n—oo n—oo 1
=140
=1
and
3 3
lm [ —=4+1) = lim — 4+ lim 1
n—o00 n2 n—o00 n2 n—o00
=0+1
=1

17.

18.

19.

20.

21.

Hence
3
lim (1 + —)
n—00 n
lim z,, =
lim (—2 + 1)
n—oo n
=1.
Definition.

A sequence (a,) is bounded if there ex-
ists a number M such that |a,| < M
for all n € N. A sequence which is not
bounded is called unbounded.

Example.
n

n+1
Since |a,| < 1 for all n € N, this se-

quence is bounded.

Consider the sequence a, =

Claim.

A convergent sequence is bounded.
Proof. Let (a,) be a convergent se-
quence with limit L. Then there ex-
ists a number N such the open interval
(L—1,L+1) contains all terms a,, with
n > N. It follows that all terms of a,
are less than or equal in absolute value
to the maximum M of the set

{|a1‘7 |a2|>""‘aN‘v |L+ 1|7 |L - 1|}

(Exercise: Find a counterexample to
show that the converse of this result is
false.)

Corollary.
The sequence a,, = n has no limit.

Proof. Notice that the sequence (a,) is
unbounded. If it had a limit it would
be bounded.

Example.

Consider the sequence (a,) where

a, = 3".



22.

23.

24.

Then

'=01+2)"
>1+42n
>n
It follows that the sequence (a,) is un-
bounded and hence has no limit.

Sandwich Theorem.

Let (ay), (b,) and (c,) be sequences. If
a, < b, <g¢, for all n € N and the
seqences (a,) and (¢,) have the same
limit L then lim,,_,.o b, = L

Example.

Show lim cosn‘ =
n—o00 n

Solution.

Notice that for all n > 1

cosn

NP

S|

n

The result follows by applying the sand-
wich theorem.

Example.
4

Show that Lim Z— =0.

n—oo

Solution.

By the binomial theorem

5" = (144)"

> ()4
—\5
(n) 45, Then
5

n4

<
~ p(n)

Since p is a polynomial of degree 5, the
right hand side convegres to 0 and the
result then follows from the sandwich
theorem.

Let p(n) =

| =

0<

n

(S

25.

26.

27.

28.

29.

Claim.
The following are equivalent:

(a) lim a, =0.
n—o0

(b) lim |a,| = 0.

n—oo

Proof. Exercise
Hint: Notice that

d(lan,0) = d(an,0)

Corollary.
lim ——" — .
n—o0 n

Lemma (Bernoull’s Inequality).

If z > —1 then
(I+x)" > (14 nx)
Proof. By induction. (Exercise).

Claim.
If @ > 1 then a" is unbounded above.
Proof. If @ > 1 then ¢ = 1 + x where

x =a—1. Notice x > 0. By Bernoulli’s
inequality

a"=(1+z)">1+nz

Since N is unbounded above, given M
arbitrary, there exists N € N such that
for all m > N, nx > M — 1. Hence,
for all n > N o > M proving that the
sequence (a") is unbounded above.

Claim.
If 0 < |z| < 1 then

(2)

lim |z|" =0
n—oo

Proof.

If 0 < |z| < 1, there exists a > 0 such

that
1

1+a

x| =



30.

31.

32.

Hence, using Bernoulli’s inequality

1
(14 a)"

1
< .
— 1+ na

0<|z|" =

Equation (2) now follows from the sand-
wich theorem.

Corollary.
If |z| < 1 then
lim 2" =0
n—oo
Example.

Show that the sequence a,, = 3'/™ con-
verges.

Solution.

By Bernoulli’s inequality
2\" 2
(1 + —> >1+n-—
n n
=3

and so 5
3 <1+ =
n

Again, by Bernoulli’s inequality,

1 2 ”>1 2
_— — _n._
3n - 3n

1
3
and so ]
1/n
37" > 5
3n
It follows by the sandwich theorem that
lim 3Y/™ = 1.
n—oo
Claim.
If ¢ > 0 then lim a'/" = 1.
n—oo

Proof. (Exercise)

(Hint: If 1 < a see the previous exam-
ple. If 0 < a < 1 consider the recipro-
cal).

33. Claim.

lim n'/" = 1. (3)

n—oo

Proof.

Notice (exercise) that n*/™ > 1. Hence,
using the binomial theorem,

n = [nl/”]n

= [1+ (n'/™ = 1)]

n

n
> n _1q
z |, )0 )

Therefore,

2
n—1

Og(nl/”—l)g

and (3) now follows from the sandwich
theorem.

34. Definition.
A sequence (z,) in
R is:

(a) increasing if for all n,m € N

n<m— T, < Ty

(b) non-decreasing if for all n,m € N
n<m-—z, <,

(c) decreasing if for all n,m € N
n<m— T, > Ty

(d) non-increasing if for all n,m € N
n<m-—x, > Tn

The following Venn diagram, expresses
the relationships between these con-
cepts:



35.

36.

37.

38.

39.

Decreasing

Increasing

Non-decreasing Non-increasing
Dedekind (Completeness) Axiom.

Every non-empty subset of
R which is bounded above has a supre-
mum (least upper bound).

Claim.

A sequence a = (a,) of real numbers
which is both non-decreasing bounded
converges to the least upper bound of
its set of terms.

Proof. Let L = sup{a, : n € N} and
€ > (. Then there exists N such that

L—e<ay <L

(otherwise L — € would be a smaller
bound). Since « is non-decreasing

n>N—>L—-e<a, <L
Hence o converges to L.

Corollary.

A non-decreasing sequence a = (a,) of
real numbers either converges or is un-
bounded above.

Definition.

Let (z,) be a real sequence. A natural
number m is called:

(a) A peak point of () if z,,, > x,, for
all n > m.

(b) A p-blocker if m > p and x,, > x,

Bolzano Weierstrass Theorem [BW].

A bounded sequence has a convergent
subsequence.

40.

41.

42.

Proof. (See Spivak).

Let my < mo, < ..., be the set of peak
points. If this set is infinite then the
bounded non increasing subsequence

Ty = Ty = Ty - -

must converge (to its infimum). If, on
the other hand, the set of peak points
is finite, there exists a last peak point
m in which case there exists a conver-
gent subsequence of m-blockers defined
recursively as follows: let ¢ = m + 1
and, for each k, let g1 be the min-
imum blocker of ¢q;. Then the subse-
quence

Tgp S Tgy S Tgy - -

is non decreasing and bounded below so
converges.

Exercise.

In the proof of BW above, explain why
the minimum at each stage exists.

Definition.

A real sequence (a,,) is Cauchy if for ev-
ery € > (0 there exists N such that

n,m >N — |a, — an| <€

Claim.
Cauchy sequences are bounded.

Proof. Let € > 0. There exists N such
that for m,n > N, |a,, —a,| < €. Then,
by the triangle inequality

|am| = |an| < |am — an|

< €
for all m,n > N. Taking n = N. Then
|am| — lan| <€

for all m > N. It follows easly that
(@) is bounded by

+max {|ag|, |ai|, ..., lan_1|, |an]|, € + |an]|}



43. Claim [Uses BW]. Every Cauchy se-

quence in
R converges.

Proof. Let (a,) be a Cauchy sequence
of real numbers. Then (a,) is bounded
so by BW has a convergent subsequence
(an,). Let L be the limit of this subse-
quence. Then there exist /N such that

ng >N — |a, — L| <¢€/2

44.

and there exists M such that
n,ng > M — |a, — ap,| < €/2
Then, for all n > max{N, M}

|an — L| < |an — an, | + |an, — L
<€

Corollary.

Dedekind completeness implies Cauchy
completeness



