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1. Definition.

A real number L is a limit of a sequence
of real numbers if every open interval
containing L contains all but a finite
number of terms of the sequence.

2. Claim.

A sequence can have at most one limit.

Proof.

Suppose L and L′ be limits of a se-
quence. Then there exists an open in-
terval I containing L and an open inter-
val I ′ containing L′ and both of these
intervals contain all but a finite num-
ber of terms of the sequence. If L 6= L′,
I and I ′ can be chosen to be disjoint
which (exercise) leads to a contradic-
tion. Thus, it must be that L = L′.

3. Notation.

If L is the limit of a sequence (an) we
write

lim
n→∞

an = L

and we say that the sequence converges
to L or that the sequence is convergent.
A sequence with no limit is called di-
vergent.

4. Remark.

The definition of limit gives precise
meaning to the rather vague phrase “an
approaches L as n approaches∞”. This
statement does not serve as the defini-
tion of limit because neither the nature
of the “approach” nor the concept of∞
are explained.

5. Lemma.

Let I is any open interval containing L,

then within I can be found an open in-
terval of the form |x− L| < ε

6. Theorem.

Let (an) be a sequence. The following
are equivalent,

(a) lim
n→∞

an = L

(b) For every ε > 0, all but a finite
number of terms of the sequence
are contained in the interval with
center L and radius ε.

(c) ∀ε > 0, ∃N such that ∀n ∈ N

n > N =⇒ |an − L| < ε.

7. Example.

Let (an) be the sequence given by

an =
n

n+ 1
.

Show that lim
n→∞

an = 1.

Solution.

Let ε > 0 be arbitrary. We must find a
natural number N such that2

d(an, 1) < ε (1)

whenever n > N . Now

d(an, 1) =

∣∣∣∣ n

n+ 1
− 1

∣∣∣∣ =
1

n+ 1
.

Moreover, since N is unbounded above
there exists a natural number N such
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2Notice that the value of N will depend on the value of ε. The smaller the value of ε the larger N must

be in order that the open interval determined by equation (1) contains all terms after the N ’th. Figures 3
and 4 suggest that that if ε = 0.2 then N = 5 works and if ε = 0.1 then N = 9 suffices.
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that Nε > 1. It follows that:

n > N → n >
1

ε
→ εn > 1

→ 1

n
< ε

→ 1

n+ 1
< ε

→ d(an, 1) < ε

Since N has the required property, we
conclude that

lim
n→∞

n

n+ 1
= 1

8. Example.

Let (an) be the constant sequence
given by an = 5, n ∈ N. Show that
lim
n→∞

an = 5.

Solution.

Let ε > 0. It is easy to find N such
that |an − 5| < ε whenever n > N. Let
N = 24 (any other natural number will
do). Since |an − 5| = 0, for all n ∈ N it
is clearly true that |an − 5| < ε when-
ever n > 24. It follows that lim

n→∞
an = 5.

9. More generally, if an = c for all n ∈ N
then lim

n→∞
an = c.
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Figure 1. Initial Terms of the Sequence an =
n

n+ 1
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Figure 2. Graph of the sequence an =
n

n+ 1
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Figure 3. n > 5→ |an − 1| < 0.2.
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Figure 4. n > 9→ |an − 1| < 0.1.

10. Example.

Let (an) be the sequence given by

an =
1

n− 1
, n > 1.

Show using the definition of the limit of
a sequence that

lim
n→∞

an = 0.

Solution.

Let ε > 0 Notice (exercise) that 1
n−1 <

2
n

for all n > 2. Since N is unbounded,
there exists a natural number N > 1
such that Nε > 2. It follows that:

n > N → nε > 2

→ 2

n
< ε

Since
1

n− 1
<

2

n
, it follows that

n > N → 1

n− 1
< ε

→
∣∣∣∣ 1

n− 1
− 0

∣∣∣∣ < ε

→ d(an, 0) < ε

which proves that

lim
n→∞

1

n− 1
= 1

11. The next theorem reduces the calcula-
tion of complex limits to simpler ones.

12. Theorem.

Let (an) and (bn) be sequences. If
lim
n→∞

an = L and lim
n→∞

bn = M then:

(a) lim
n→∞

(an ± bn) = L±M

(b) lim
n→∞

(an · bn) = L ·M

(c) If M 6= 0 and bn 6= 0 for all n then

lim
n→∞

an
bn

=
L

M
.

13. Example.

Find the limit of the sequence (an)
given by

an = 3/n

Solution.

Notice an = xn ·yn where xn = 1/n and
yn = 3, n ∈ N. Now, it is easy to
show that lim

n→∞
xn = 0 and lim

n→∞
yn = 3.

Using part (b) of the above theorem
yields

lim
n→∞

an = 0 · 3 = 0

14. Example.

Find the limit of the sequence (an)
given by

an =
1

n2
.

Solution.
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Let xn = 1/n. Then

an = xn · xn

Since lim
n→∞

xn = 0.

lim
n→∞

an = lim
n→∞

xn · lim
n→∞

xn

= 0 · 0
= 0.

15. Using mathematical induction (exer-
cise) it is now easy to show that

lim
n→∞

1

np
= 0

for any natural number p > 0.

16. Example.

Find the limit of the sequence

xn =
n2 + 3n

3 + n2
.

Solution.

xn =

n2

n2
+

3n

n2

3

n2
+
n2

n2

=
1 +

3

n
3

n2
+ 1

But

lim
n→∞

(
1 +

3

n

)
= lim

n→∞
1 + lim

n→∞

3

n

= 1 + 0

= 1

and

lim
n→∞

(
3

n2
+ 1

)
= lim

n→∞

3

n2
+ lim

n→∞
1

= 0 + 1

= 1

Hence

lim
n→∞

xn =

lim
n→∞

(
1 +

3

n

)
lim
n→∞

(
3

n2
+ 1

)
.

= 1.

17. Definition.

A sequence (an) is bounded if there ex-
ists a number M such that |an| ≤ M
for all n ∈ N. A sequence which is not
bounded is called unbounded.

18. Example.

Consider the sequence an =
n

n+ 1
.

Since |an| ≤ 1 for all n ∈ N, this se-
quence is bounded.

19. Claim.

A convergent sequence is bounded.

Proof. Let (an) be a convergent se-
quence with limit L. Then there ex-
ists a number N such the open interval
(L−1, L+1) contains all terms an with
n > N . It follows that all terms of an
are less than or equal in absolute value
to the maximum M of the set

{|a1|, |a2|, . . . , |aN |, |L+ 1|, |L− 1|}

(Exercise: Find a counterexample to
show that the converse of this result is
false.)

20. Corollary.

The sequence an = n has no limit.

Proof. Notice that the sequence (an) is
unbounded. If it had a limit it would
be bounded.

21. Example.

Consider the sequence (an) where

an = 3n.
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Then

3n = (1 + 2)n

≥ 1 + 2n

≥ n

It follows that the sequence (an) is un-
bounded and hence has no limit.

22. Sandwich Theorem.

Let (an), (bn) and (cn) be sequences. If
an ≤ bn ≤ cn for all n ∈ N and the
seqences (an) and (cn) have the same
limit L then limn→∞ bn = L

23. Example.

Show lim
n→∞

∣∣∣cosn

n

∣∣∣ = 0

Solution.

Notice that for all n ≥ 1

0 ≤
∣∣∣cosn

n

∣∣∣ ≤ 1

n

The result follows by applying the sand-
wich theorem.

24. Example.

Show that lim
n→∞

n4

5n
= 0.

Solution.

By the binomial theorem

5n = (1 + 4)n

≥
(
n

5

)
45

Let p(n) =

(
n

5

)
45. Then

0 ≤ n4

5n
≤ n4

p(n)

Since p is a polynomial of degree 5, the
right hand side convegres to 0 and the
result then follows from the sandwich
theorem.

25. Claim.

The following are equivalent:

(a) lim
n→∞

an = 0.

(b) lim
n→∞

|an| = 0.

Proof. Exercise

Hint: Notice that

d(|an|, 0) = d(an, 0)

26. Corollary.

lim
n→∞

cosn

n
= 0.

27. Lemma (Bernoull’s Inequality).

If x > −1 then

(1 + x)n ≥ (1 + nx)

Proof. By induction. (Exercise).

28. Claim.

If a > 1 then an is unbounded above.

Proof. If a > 1 then a = 1 + x where
x = a−1. Notice x > 0. By Bernoulli’s
inequality

an = (1 + x)n > 1 + nx

Since N is unbounded above, given M
arbitrary, there exists N ∈ N such that
for all n > N , nx > M − 1. Hence,
for all n > N an > M proving that the
sequence (an) is unbounded above.

29. Claim.

If 0 < |x| < 1 then

lim
n→∞

|x|n = 0 (2)

Proof.

If 0 < |x| < 1, there exists a > 0 such
that

|x| = 1

1 + a
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Hence, using Bernoulli’s inequality

0 ≤ |x|n =
1

(1 + a)n

≤ 1

1 + na
.

Equation (2) now follows from the sand-
wich theorem.

30. Corollary.

If |x| < 1 then

lim
n→∞

xn = 0

31. Example.

Show that the sequence an = 31/n con-
verges.

Solution.

By Bernoulli’s inequality(
1 +

2

n

)n

≥ 1 + n · 2

n

= 3

and so

31/n ≤ 1 +
2

n
Again, by Bernoulli’s inequality,(

1− 2

3n

)n

≥ 1− n · 2

3n

=
1

3

and so

31/n ≥ 1

1− 2

3n
It follows by the sandwich theorem that

lim
n→∞

31/n = 1.

32. Claim.

If a > 0 then lim
n→∞

a1/n = 1.

Proof. (Exercise)

(Hint: If 1 < a see the previous exam-
ple. If 0 < a < 1 consider the recipro-
cal).

33. Claim.

lim
n→∞

n1/n = 1. (3)

Proof.

Notice (exercise) that n1/n > 1. Hence,
using the binomial theorem,

n =
[
n1/n

]n
=
[
1 + (n1/n − 1)

]n
≥
(
n

2

)
(n1/n − 1)

Therefore,

0 ≤ (n1/n − 1) ≤
√

2

n− 1

and (3) now follows from the sandwich
theorem.

34. Definition.

A sequence (xn) in
R is:

(a) increasing if for all n,m ∈ N

n < m→ xn < xm

(b) non-decreasing if for all n,m ∈ N

n ≤ m→ xn ≤ xm

(c) decreasing if for all n,m ∈ N

n < m→ xn > xm

(d) non-increasing if for all n,m ∈ N

n ≤ m→ xn ≥ xm

The following Venn diagram, expresses
the relationships between these con-
cepts:
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A Cinc dec

Non-decreasing

Decreasing

Non-increasing

Increasing

35. Dedekind (Completeness) Axiom.

Every non-empty subset of
R which is bounded above has a supre-
mum (least upper bound).

36. Claim.

A sequence α = (an) of real numbers
which is both non-decreasing bounded
converges to the least upper bound of
its set of terms.

Proof. Let L = sup{an : n ∈ N} and
ε > 0. Then there exists N such that

L− ε < aN ≤ L

(otherwise L − ε would be a smaller
bound). Since α is non-decreasing

n ≥ N → L− ε < an ≤ L

Hence α converges to L.

37. Corollary.

A non-decreasing sequence α = (an) of
real numbers either converges or is un-
bounded above.

38. Definition.

Let (xn) be a real sequence. A natural
number m is called:

(a) A peak point of (xn) if xm ≥ xn for
all n ≥ m.

(b) A p-blocker if m > p and xm ≥ xp

39. Bolzano Weierstrass Theorem [BW].

A bounded sequence has a convergent
subsequence.

Proof. (See Spivak).

Let m1 < m2, < . . . , be the set of peak
points. If this set is infinite then the
bounded non increasing subsequence

xm1 ≥ xm2 ≥ xmk
. . .

must converge (to its infimum). If, on
the other hand, the set of peak points
is finite, there exists a last peak point
m in which case there exists a conver-
gent subsequence of m-blockers defined
recursively as follows: let q1 = m + 1
and, for each k, let qk+1 be the min-
imum blocker of qk. Then the subse-
quence

xq1 ≤ xq2 ≤ xqk . . .

is non decreasing and bounded below so
converges.

40. Exercise.

In the proof of BW above, explain why
the minimum at each stage exists.

41. Definition.

A real sequence (an) is Cauchy if for ev-
ery ε > 0 there exists N such that

n,m > N → |an − am| < ε

.

42. Claim.

Cauchy sequences are bounded.

Proof. Let ε > 0. There exists N such
that for m,n ≥ N , |am−an| < ε. Then,
by the triangle inequality

|am| − |an| ≤ |am − an|
< ε

for all m,n ≥ N. Taking n = N . Then

|am| − |aN | < ε

for all m ≥ N . It follows easly that
(am) is bounded by

±max {|a0|, |a1|, . . . , |aN−1|, |aN |, ε+ |aN |}
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43. Claim [Uses BW]. Every Cauchy se-
quence in
R converges.

Proof. Let (an) be a Cauchy sequence
of real numbers. Then (an) is bounded
so by BW has a convergent subsequence
(ank

). Let L be the limit of this subse-
quence. Then there exist N such that

nk > N → |ank
− L| < ε/2

and there exists M such that

n, nk > M → |an − ank
| < ε/2

Then, for all n > max{N,M}

|an − L| ≤ |an − ank
|+ |ank

− L|
< ε

44. Corollary.

Dedekind completeness implies Cauchy
completeness
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