The Limit of a Sequence (Brief Summary)

Prof. Philip Pennance¹ Version: August 28, 2019...

1. Definition.

A real number L is a *limit* of a sequence of real numbers if every open interval containing L contains all but a finite number of terms of the sequence.

2. Claim.

A sequence can have at most one limit.

Proof.

Suppose L and L' be limits of a sequence. Then there exists an open interval I containing L and an open interval I' containing L' and both of these intervals contain all but a finite number of terms of the sequence. If $L \neq L'$, I and I' can be chosen to be disjoint which (exercise) leads to a contradiction. Thus, it must be that L = L'.

3. Notation.

If L is the limit of a sequence (a_n) we write

$$\lim_{n \to \infty} a_n = L$$

and we say that the sequence converges to L or that the sequence is convergent. A sequence with no limit is called divergent.

4. Remark.

The definition of limit gives precise meaning to the rather vague phrase " a_n approaches L as n approaches ∞ ". This statement does not serve as the definition of limit because neither the nature of the "approach" nor the concept of ∞ are explained.

5. Lemma.

Let I is any open interval containing L,

then within I can be found an open interval of the form $|x - L| < \epsilon$

6. Theorem.

Let (a_n) be a sequence. The following are equivalent,

- (a) $\lim_{n\to\infty} a_n = L$
- (b) For every $\epsilon > 0$, all but a finite number of terms of the sequence are contained in the interval with center L and radius ϵ .
- (c) $\forall \epsilon > 0$, $\exists N \text{ such that } \forall n \in \mathbb{N}$

$$n > N \implies |a_n - L| < \epsilon.$$

7. Example.

Let (a_n) be the sequence given by

$$a_n = \frac{n}{n+1}.$$

Show that $\lim_{n\to\infty} a_n = 1$.

Solution.

Let $\epsilon > 0$ be arbitrary. We must find a natural number N such that²

$$d(a_n, 1) < \epsilon \tag{1}$$

whenever n > N. Now

$$d(a_n, 1) = \left| \frac{n}{n+1} - 1 \right| = \frac{1}{n+1}.$$

Moreover, since \mathbb{N} is unbounded above there exists a natural number N such

¹http://pennance.us

²Notice that the value of N will depend on the value of ϵ . The smaller the value of ϵ the larger N must be in order that the open interval determined by equation (1) contains all terms after the N'th. Figures 3 and 4 suggest that that if $\epsilon = 0.2$ then N = 5 works and if $\epsilon = 0.1$ then N = 9 suffices.

that $N\epsilon > 1$. It follows that:

$$n > N \to n > \frac{1}{\epsilon}$$

$$\to \epsilon n > 1$$

$$\to \frac{1}{n} < \epsilon$$

$$\to \frac{1}{n+1} < \epsilon$$

$$\to d(a_n, 1) < \epsilon$$

Since N has the required property, we conclude that

$$\lim_{n\to\infty}\frac{n}{n+1}=1$$

8. Example.

Let (a_n) be the constant sequence given by $a_n = 5, n \in \mathbb{N}$. Show that $\lim_{n \to \infty} a_n = 5$.

Solution.

Let $\epsilon > 0$. It is easy to find N such that $|a_n - 5| < \epsilon$ whenever n > N. Let N = 24 (any other natural number will do). Since $|a_n - 5| = 0$, for all $n \in \mathbb{N}$ it is clearly true that $|a_n - 5| < \epsilon$ whenever n > 24. It follows that $\lim_{n \to \infty} a_n = 5$.

9. More generally, if $a_n = c$ for all $n \in \mathbb{N}$ then $\lim_{n \to \infty} a_n = c$.

Figure 1. Initial Terms of the Sequence $a_n = \frac{n}{n+1}$

Figure 2. Graph of the sequence $a_n = \frac{n}{n+1}$

Figure 4. $n > 9 \rightarrow |a_n - 1| < 0.1$.

10. Example.

Let (a_n) be the sequence given by

$$a_n = \frac{1}{n-1}, \quad n > 1.$$

Show using the definition of the limit of a sequence that

$$\lim_{n \to \infty} a_n = 0.$$

Solution.

Let $\epsilon > 0$ Notice (exercise) that $\frac{1}{n-1} < \frac{2}{n}$ for all n > 2. Since \mathbb{N} is unbounded, there exists a natural number N > 1 such that $N\epsilon > 2$. It follows that:

$$n > N \to n\epsilon > 2$$

 $\to \frac{2}{n} < \epsilon$

Since $\frac{1}{n-1} < \frac{2}{n}$, it follows that

$$n > N \to \frac{1}{n-1} < \epsilon$$

$$\to \left| \frac{1}{n-1} - 0 \right| < \epsilon$$

$$\to d(a_n, 0) < \epsilon$$

which proves that

$$\lim_{n\to\infty}\frac{1}{n-1}=1$$

11. The next theorem reduces the calculation of complex limits to simpler ones.

12. Theorem.

Let (a_n) and (b_n) be sequences. If $\lim_{n\to\infty} a_n = L$ and $\lim_{n\to\infty} b_n = M$ then:

(a)
$$\lim_{n \to \infty} (a_n \pm b_n) = L \pm M$$

(b)
$$\lim_{n \to \infty} (a_n \cdot b_n) = L \cdot M$$

(c) If $M \neq 0$ and $b_n \neq 0$ for all n then

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{L}{M}.$$

13. Example.

Find the limit of the sequence (a_n) given by

$$a_n = 3/n$$

Solution.

Notice $a_n = x_n \cdot y_n$ where $x_n = 1/n$ and $y_n = 3$, $n \in \mathbb{N}$. Now, it is easy to show that $\lim_{n \to \infty} x_n = 0$ and $\lim_{n \to \infty} y_n = 3$. Using part (b) of the above theorem yields

$$\lim_{n \to \infty} a_n = 0 \cdot 3 = 0$$

14. Example.

Find the limit of the sequence (a_n) given by

$$a_n = \frac{1}{n^2}.$$

Solution.

Let $x_n = 1/n$. Then

$$a_n = x_n \cdot x_n$$

Since $\lim_{n\to\infty} x_n = 0$.

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} x_n \cdot \lim_{n \to \infty} x_n$$
$$= 0 \cdot 0$$
$$= 0.$$

15. Using mathematical induction (exercise) it is now easy to show that

$$\lim_{n \to \infty} \frac{1}{n^p} = 0$$

for any natural number p > 0.

16. Example.

Find the limit of the sequence

$$x_n = \frac{n^2 + 3n}{3 + n^2}.$$

Solution.

$$x_n = \frac{\frac{n^2}{n^2} + \frac{3n}{n^2}}{\frac{3}{n^2} + \frac{n^2}{n^2}}$$
$$= \frac{1 + \frac{3}{n}}{\frac{3}{n^2} + 1}$$

But

$$\lim_{n \to \infty} \left(1 + \frac{3}{n} \right) = \lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{3}{n}$$
$$= 1 + 0$$
$$= 1$$

and

$$\lim_{n \to \infty} \left(\frac{3}{n^2} + 1 \right) = \lim_{n \to \infty} \frac{3}{n^2} + \lim_{n \to \infty} 1$$
$$= 0 + 1$$
$$= 1$$

Hence

$$\lim_{n \to \infty} x_n = \frac{\lim_{n \to \infty} \left(1 + \frac{3}{n} \right)}{\lim_{n \to \infty} \left(\frac{3}{n^2} + 1 \right)}.$$

$$= 1.$$

17. Definition.

A sequence (a_n) is bounded if there exists a number M such that $|a_n| \leq M$ for all $n \in \mathbb{N}$. A sequence which is not bounded is called unbounded.

18. Example.

Consider the sequence $a_n = \frac{n}{n+1}$. Since $|a_n| \leq 1$ for all $n \in \mathbb{N}$, this sequence is bounded.

19. Claim.

A convergent sequence is bounded.

Proof. Let (a_n) be a convergent sequence with limit L. Then there exists a number N such the open interval (L-1, L+1) contains all terms a_n with n > N. It follows that all terms of a_n are less than or equal in absolute value to the maximum M of the set

$$\{|a_1|, |a_2|, \dots, |a_N|, |L+1|, |L-1|\}$$

(Exercise: Find a counterexample to show that the converse of this result is false.)

20. Corollary.

The sequence $a_n = n$ has no limit.

Proof. Notice that the sequence (a_n) is unbounded. If it had a limit it would be bounded.

21. Example.

Consider the sequence (a_n) where

$$a_n = 3^n$$
.

Then

$$3^{n} = (1+2)^{n}$$

$$\geq 1 + 2n$$

$$\geq n$$

It follows that the sequence (a_n) is unbounded and hence has no limit.

22. Sandwich Theorem.

Let (a_n) , (b_n) and (c_n) be sequences. If $a_n \leq b_n \leq c_n$ for all $n \in \mathbb{N}$ and the sequences (a_n) and (c_n) have the same limit L then $\lim_{n\to\infty} b_n = L$

23. Example.

Show
$$\lim_{n \to \infty} \left| \frac{\cos n}{n} \right| = 0$$

Solution.

Notice that for all $n \ge 1$

$$0 \le \left| \frac{\cos n}{n} \right| \le \frac{1}{n}$$

The result follows by applying the sandwich theorem.

24. Example.

Show that
$$\lim_{n\to\infty} \frac{n^4}{5^n} = 0$$
.

Solution.

By the binomial theorem

$$5^n = (1+4)^n$$
$$\ge \binom{n}{5} 4^5$$

Let
$$p(n) = \binom{n}{5} 4^5$$
. Then

$$0 \le \frac{n^4}{5^n} \le \frac{n^4}{p(n)}$$

Since p is a polynomial of degree 5, the right hand side convegres to 0 and the result then follows from the sandwich theorem.

25. Claim.

The following are equivalent:

- (a) $\lim_{n\to\infty} a_n = 0$.
- (b) $\lim_{n \to \infty} |a_n| = 0.$

Proof. Exercise

Hint: Notice that

$$d(|a_n|, 0) = d(a_n, 0)$$

26. Corollary.

$$\lim_{n \to \infty} \frac{\cos n}{n} = 0.$$

27. Lemma (Bernoull's Inequality).

If x > -1 then

$$(1+x)^n \ge (1+nx)$$

Proof. By induction. (Exercise).

28. Claim.

If a > 1 then a^n is unbounded above.

Proof. If a > 1 then a = 1 + x where x = a - 1. Notice x > 0. By Bernoulli's inequality

$$a^n = (1+x)^n > 1+nx$$

Since \mathbb{N} is unbounded above, given M arbitrary, there exists $N \in \mathbb{N}$ such that for all n > N, nx > M - 1. Hence, for all n > N $a^n > M$ proving that the sequence (a^n) is unbounded above.

29. Claim.

If 0 < |x| < 1 then

$$\lim_{n \to \infty} |x|^n = 0 \tag{2}$$

Proof.

If 0 < |x| < 1, there exists a > 0 such that

$$|x| = \frac{1}{1+a}$$

Hence, using Bernoulli's inequality

$$0 \le |x|^n = \frac{1}{(1+a)^n}$$
$$\le \frac{1}{1+na}.$$

Equation (2) now follows from the sandwich theorem.

30. Corollary.

If |x| < 1 then

$$\lim_{n \to \infty} x^n = 0$$

31. Example.

Show that the sequence $a_n = 3^{1/n}$ converges.

Solution.

By Bernoulli's inequality

$$\left(1 + \frac{2}{n}\right)^n \ge 1 + n \cdot \frac{2}{n}$$

$$= 3$$

and so

$$3^{1/n} \le 1 + \frac{2}{n}$$

Again, by Bernoulli's inequality,

$$\left(1 - \frac{2}{3n}\right)^n \ge 1 - n \cdot \frac{2}{3n}$$
$$= \frac{1}{3}$$

and so

$$3^{1/n} \ge \frac{1}{1 - \frac{2}{3n}}$$

It follows by the sandwich theorem that

$$\lim_{n \to \infty} 3^{1/n} = 1.$$

32. Claim.

If a > 0 then $\lim_{n \to \infty} a^{1/n} = 1$.

Proof. (Exercise)

(Hint: If 1 < a see the previous example. If 0 < a < 1 consider the reciprocal).

6

33. Claim.

$$\lim_{n \to \infty} n^{1/n} = 1. \tag{3}$$

Proof.

Notice (exercise) that $n^{1/n} > 1$. Hence, using the binomial theorem,

$$n = [n^{1/n}]^n$$

$$= [1 + (n^{1/n} - 1)]^n$$

$$\geq {n \choose 2} (n^{1/n} - 1)$$

Therefore,

$$0 \le (n^{1/n} - 1) \le \sqrt{\frac{2}{n - 1}}$$

and (3) now follows from the sandwich theorem.

34. Definition.

A sequence (x_n) in R is:

(a) increasing if for all $n, m \in \mathbb{N}$

$$n < m \to x_n < x_m$$

(b) non-decreasing if for all $n, m \in \mathbb{N}$

$$n \le m \to x_n \le x_m$$

(c) decreasing if for all $n, m \in \mathbb{N}$

$$n < m \rightarrow x_n > x_m$$

(d) non-increasing if for all $n, m \in \mathbb{N}$

$$n \le m \to x_n \ge x_m$$

The following Venn diagram, expresses the relationships between these concepts:

Non-decreasing

Non-increasing

35. Dedekind (Completeness) Axiom.

Every non-empty subset of R which is bounded above has a supremum (least upper bound).

36. Claim.

A sequence $\alpha = (a_n)$ of real numbers which is both non-decreasing bounded converges to the least upper bound of its set of terms.

Proof. Let $L = \sup\{a_n : n \in \mathbb{N}\}$ and $\epsilon > 0$. Then there exists N such that

$$L - \epsilon < a_N \le L$$

(otherwise $L - \epsilon$ would be a smaller bound). Since α is non-decreasing

$$n > N \to L - \epsilon < a_n < L$$

Hence α converges to L.

37. Corollary.

A non-decreasing sequence $\alpha = (a_n)$ of real numbers either converges or is unbounded above.

38. Definition.

Let (x_n) be a real sequence. A natural number m is called:

- (a) A peak point of (x_n) if $x_m \ge x_n$ for all n > m.
- (b) A *p-blocker* if m > p and $x_m \ge x_p$
- 39. Bolzano Weierstrass Theorem [BW].

A bounded sequence has a convergent subsequence.

Proof. (See Spivak).

Let $m_1 < m_2, < \dots$, be the set of peak points. If this set is infinite then the bounded non increasing subsequence

$$x_{m_1} \ge x_{m_2} \ge x_{m_k} \dots$$

must converge (to its infimum). If, on the other hand, the set of peak points is finite, there exists a last peak point m in which case there exists a convergent subsequence of m-blockers defined recursively as follows: let $q_1 = m + 1$ and, for each k, let q_{k+1} be the minimum blocker of q_k . Then the subsequence

$$x_{q_1} \leq x_{q_2} \leq x_{q_k} \dots$$

is non decreasing and bounded below so converges.

40. Exercise.

In the proof of BW above, explain why the minimum at each stage exists.

41. Definition.

A real sequence (a_n) is Cauchy if for every $\epsilon > 0$ there exists N such that

$$n, m > N \to |a_n - a_m| < \epsilon$$

.

42. Claim.

Cauchy sequences are bounded.

Proof. Let $\epsilon > 0$. There exists N such that for $m, n \geq N$, $|a_m - a_n| < \epsilon$. Then, by the triangle inequality

$$|a_m| - |a_n| \le |a_m - a_n| < \epsilon$$

for all $m, n \geq N$. Taking n = N. Then

$$|a_m| - |a_N| < \epsilon$$

for all $m \geq N$. It follows easly that (a_m) is bounded by

$$\pm \max\{|a_0|, |a_1|, \dots, |a_{N-1}|, |a_N|, \epsilon + |a_N|\}$$

43. Claim [Uses BW]. Every Cauchy sequence in R converges.

Proof. Let (a_n) be a Cauchy sequence of real numbers. Then (a_n) is bounded so by BW has a convergent subsequence (a_{n_k}) . Let L be the limit of this subsequence. Then there exist N such that

$$n_k > N \rightarrow |a_{n_k} - L| < \epsilon/2$$

and there exists M such that

$$n, n_k > M \rightarrow |a_n - a_{n_k}| < \epsilon/2$$

Then, for all $n > \max\{N, M\}$

$$|a_n - L| \le |a_n - a_{n_k}| + |a_{n_k} - L|$$

$$< \epsilon$$

44. Corollary.

Dedekind completeness implies Cauchy completeness