Linear Correlation

© 1998 Prof. Philip Pennance¹ -Version: March 28, 2007

1. Standardization.

Let X is a random variable with mean EX and variance σ . Recall that the corresponding standardized variable

$$Z = \frac{X - EX}{\sigma}$$

satisfies: E(Z) = 0, V(Z) = 1, and $E(Z^2) = 1$.

2. Linear Correlation

The coefficient of linear correlation ρ between two random variables X and Y defined on the same sample space is defined by

$$\rho = E(Z_1 Z_2)$$

where Z_1 and Z_2 are the corresponding standardized variables. Notice that:

$$0 \leq E(Z_1 - \rho Z_2)^2$$

= $EZ_1^2 + \rho^2 EZ_2^2 - 2\rho E(Z_1 Z_2)$
= $1 - \rho^2$

from which follows $-1 \le \rho \le 1$.

3. A Geometric Analog. Let Z_1 and Z_2 be unit vectors in \mathbb{R}^n . The projection of Z_1 on Z_2 is the vector ρZ_2 where $\rho = \langle Z_1, Z_2 \rangle$ is the scalar product of Z_1 and Z_2 . Since Z_1 and Z_2 are unit vectors it follows that ρ is just the cosine of the angle between Z_1 and Z_2 .

Notice that:

$$0 \leq |Z_1 - \rho Z_2|^2$$

= $|Z_1|^2 + \rho^2 |Z_2|^2 - 2\rho \langle Z_1, Z_2 \rangle$
= $1 - \rho^2$

It is seen that the geometric analogue of a standardized random variable is a unit vector. The coefficient of linear correlation plays the same role as the cosine of the angle between two unit vectors.

¹ http://pennance.us