Truth in Propositional Calculus

Philip Pennance¹ – February 1998.

1. Introduction.

In the calculus of propositions (i.e. logic without quantifiers), if p, q are propositions, then so are the *compound* statements: $p \lor q$ (disjunction); $p \land q$ (conjunction); $p \rightarrow q$ (implication); $p \leftrightarrow q$ (equivalence).

The *truth* of these statements is determined by the truth of p and q according to the following tables known as *truth* tables in which 1 denotes *true* and 0 denotes false. A complete list of truth tables for the case two propositions can be found here.

2. Definition.

The disjunction $p \lor q$ is is false if both p and q are false, and true otherwise.

p	q	$p \lor q$
1	1	1
1	0	1
0	1	1
0	0	0

3. Example.

If p is the statement "I teach mathematics" and q is the statement "I teach physics" then $p \vee q$ is the statement "Either I teach mathematics or I teach physics".

4. Remark. Since disjunction of p and q is true when both p and q are true \vee is sometimes called the *inclusive or*.

5. Definition.

The conjunction $p \wedge q$ is true if both p and q are true and false otherwise.

p	q	$p \wedge q$
1	1	1
1	0	0
0	1	0
0	0	0

¹https://pennance.us

The conjunction $p \wedge q$ is true if both p and q are true and false otherwise.

6. Example

If p is the statement "4 is positive" and q is the statement "4 is less than 5", then $p \wedge q$ is "4 is positive and less than 5".

7. Definition.

The statement "p implies q" is false if p is true and q is false and true otherwise.

p	q	$p \to q$
1	1	1
1	0	0
0	1	1
0	0	1

8. Warning.

The truth of a statement such as

"the presence of oxygen implies fire"

can **NOT** be determined solely from a truth table. Empirical knowlede is required.

9. Definition.

The equivalence $p \leftrightarrow q$ is true if p and q have the same truth values and false otherwise.

p	q	$p \leftrightarrow q$
1	1	1
1	0	0
0	1	0
0	0	1

Linguistically \leftrightarrow corresponds to the phrase "if and only if".

