1. Let \(G \) be an e-labelled graph with edge set \(E(G) \). A graph \(F \) is called an \textit{abstract dual} or \textit{matroid dual} of \(G \) if there exists a bijection \(\varepsilon : E(G) \rightarrow E(F) \) such that:

\[C \in C(G) \iff \varepsilon(C) \in C^*(F) \]

By edge relabelling, the bijection \(\varepsilon \) can be taken to be the identity so that \(E(F) = E(G) \) and \(C(G) = C^*(F) \).

2. There may exist two abstract duals \(F \) and \(F' \) with the same bijection \(\varepsilon \).

3. Let \(F, G \) be e-labelled graphs with \(E(G) = E(F) \). A bijection \(\varepsilon : E(G) \rightarrow E(F) \) such that:

\[C \in C(G) \iff \varepsilon(C) \in C(F) \]

is called a \textit{cycle isomorphism}.

4. The following are equivalent:

(a) Cycle isomorphism: \(C(G) = C(F) \)

(b) Cocycle isomorphism \(C^*(G) = C^*(F) \)

(c) Tree isomorphism \(T(G) = T(F) \)

(d) Cotree isomorphism \(T^*(G) = T^*(F) \)

(e) Forest isomorphism \(F(G) = F(F) \)

(f) Co-forest isomorphism \(F^*(G) = F^*(F) \)

5. Since

\[\operatorname{Min} \perp C(G) = C^*(G) \quad \text{and} \quad \operatorname{Min} \perp C^*(G) = C(G) \]

the following are equivalent:

(a) Abstract duality \(C(G) = C^*(F) \)

(b) Abstract duality* \(C^*(G) = C(F) \)

(c) Tree duality \(T(G) = T^*(F) \)

(d) Co-tree duality \(T^*(G) = T(F) \)

(e) Forest duality \(F(G) = F^*(F) \)

(f) Co-forest duality \(F^*(G) = F(F) \)

6. If \(F \) is the abstract dual of \(G \) then

(a) \(G \) is the abstract dual of \(F \)

(b) \(T \) is a spanning tree of \(G \) if and only if \(E \setminus T \) is a spanning tree of \(F \).

7. If \(G \) is a plane graph, the geometric dual of \(G \) is also an abstract dual.

8. \(K_{33} \) and \(K_5 \) have no abstract dual.

9. The class of graphs with an abstract dual is closed under the operations of subdivision and taking a subgraph.

10. Theorem [H. Whitney]

The following are equivalent:

(a) \(G \) has an abstract dual.

(b) \(G \) is planar.

Proof: If \(G \) is planar, it has a geometric dual and hence an abstract dual. Conversely, if \(G \) is non planar, it contains a subgraph which is subdivision of \(K_{33} \) or \(K_5 \). This is impossible in a graph with an abstract dual.

\[\text{Source: http://pennance.us} \]